期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A FINITE ELEMENT ANALYSIS OF THE FLANGE EARRINGS OF STRONG ANISOTROPIC SHEET METALS IN DEEP-DRAWING PROCESSES 被引量:2
1
作者 柳玉起 王锦程 胡平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第1期82-91,共10页
Flange earrings of strong anisotropic sheet metals in deep-drawing process are numerically analyzed by the elastic-plastic large deformation finite element formulation based on a discrete Kirchhoff triangle plate shel... Flange earrings of strong anisotropic sheet metals in deep-drawing process are numerically analyzed by the elastic-plastic large deformation finite element formulation based on a discrete Kirchhoff triangle plate shell element model. A Barlat-Lian anisotropic yield function and a quasi-flow corner theory are used in the present formulation. The numerical results are compared with the experimental ones of cylindrical cup drawing process. The focus of the present researches is on the numerical analysis and the constraining scheme of the flange earring of circular sheets with strong anisotropy in square cup drawing process. 展开更多
关键词 discrete Kirchhoff triangle plate shell element B-L planer anisotropy yield function quasi-flow corner theory flange earrings square cup drawing
下载PDF
CRYSTALLOGRAPHIC HOMOGENIZATION FINITE ELEMENT METHOD AND ITS APPLICATION ON SIMULATION OF EVOLUTION OF PLASTIC DEFORMATION INDUCED TEXTURE 被引量:3
2
作者 Yiping Chen W.B. Lee E. Nakamachi 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第1期36-48,共13页
A crystallographic homogenization method is proposed and implemented to predict the evolution of plastic deformation induced texture and plastic anisotropy (earring) in the stamping of polycrystalline sheet metals. ... A crystallographic homogenization method is proposed and implemented to predict the evolution of plastic deformation induced texture and plastic anisotropy (earring) in the stamping of polycrystalline sheet metals. The microscopic inhomogeneity of crystal aggregate has been taken into account with the microstructure made up of a representative aggregate of single crystal grains. Multi-scale analysis is performed by coupling the microscopic crystal plasticity with the macroscopic continuum response through the present homogenization procedure. The macroscopic stress is defined as the volume average of the corresponding microscopic crystal aggregations, which simultaneously satisfies the equation of motion in both micro- and macro-states. The proposed numerical implementation is based on a finite element discretization of the macrocontinuum, which is locally coupled at each Gaussian point with a finite element discretization of the attached micro-structure. The solution strategy for the macro-continuum and the pointwiseattached micro-structure is implemented by the simultaneous employment of dynamic explicit FE formulation. The rate-dependent crystal plasticity model is used for the constitutive description of the constituent single crystal grains. It has been confirmed that Taylor's constant strain homogenization assumption yields an undue concentration of the preferred crystal orientation compared with the present homogenization in the prediction of texture evolution, with the latter having relaxed the constraints on the crystal grains. Two kinds of numerical examples are presented to demonstrate the capability of the developed code: 1) The texture evolution of three representative deformation modes, and 2) Plastic anisotropy (earring) prediction in the hemispherical cup deep drawing process of aluminum alloy A5052 with initial texture. By comparison of simulation results with those obtained employing direct crystal plasticity calculation adopting Taylor assumption, conclusions are drawn that the proposed dynamic explicit crystallographic homogenization FEM is able to more accurately predict the plastic deformation induced texture evolution and plastic anisotropy in the deep drawing process. 展开更多
关键词 HOMOGENIZATION crystal plasticity TEXTURE MICROSTRUCTURE earring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部