This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient im...This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient impedance and dominant transient frequency. The Discrete Fourier Transform (DFT) method is used to determine the dominant transient frequency. The values of voltage and current earth modes are calculated in the period of the dominant transient frequency, then the transient impedance can be determined, from which we can calculate the earth capacitance. The calculated capacitance gives an indication about if the feeder is faulted or not. The algorithm is less dependent on the fault resistance and the faulted feeder parameters; it mainly depends on the background network. The network is simulated by ATP/EMTP program. Several different fault conditions are covered in the simulation process, different fault inception angles, fault locations and fault resistances.展开更多
It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transien...This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transient residual currents, which are very sensitive for earth faults detection. The transient values of residual currents are calculated for each feeder in the network and used as an earth fault indicator. The flow of residual currents is investigated. It is found that the residual current for the faulted feeder is equal to the summation of all residual currents for all other healthy feedersl Based on this investigation, a differential technique is proposed. A percentage restrain performance is proposed to ensure the selectivity and security of the algorithm. The transient algorithm is very sensitive for earth fault incidence. To apply the proposed algorithm, the residual currents can be measured easily by one sensor for each feeder with no need to voltage measurement. The proposed algorithm is less dependent on the fault resistance and the faulted feeder parameters. The network is simulated by ATP/EMTP program. Different fault conditions are covered in the simulation process: different fault inception angles, fault locations and fault resistances.展开更多
Secondary earth faults occur frequently in power distribution networks under harsh weather conditions.Owing to its characteristics,a secondary earth fault is typically hidden within the transient of the first fault.Th...Secondary earth faults occur frequently in power distribution networks under harsh weather conditions.Owing to its characteristics,a secondary earth fault is typically hidden within the transient of the first fault.Therefore,most researchers tend to focus on a feeder with single fault while disregarding secondary faults.This paper presents a fault feeder identification method that considers secondary earth faults in a non-effectively grounded distribution network.First,the wavelet singular entropy method is used to detect a secondary fault event.This method can identify the moment at which a secondary fault occurs.The zero-sequence current data can be categorized into two fault stages.The first and second fault stages correspond to the first and secondary faults,respectively.Subsequently,a similarity matrix containing the time-frequency transient information of the zero-sequence current at the two fault stages is defined to identify the fault feeders.Finally,to confirm the effectiveness and reliability of the proposed method,we conduct simulation experiments and an adaptability analysis based on an electromagnetic transient program.展开更多
Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone....Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone. However, characteristics of rare earth elements show that intrusions in the Zhangbaling uplift zone have the characteristics of mantle source type and those in the eastern margin of Dabie belt are the typical crust source type. Therefore, Au-deposits related to the intrusions in the Zhangbaling uplift zone are developed better than those in the eastern margin of the Dabieshan. The research results of the rare earth elements coincide with the studies of geophysics, tectonic setting and stable isotope. It is further indicated that the rare earth elements offer effective approach to tracing the material sources of magmatic rocks.展开更多
The relation between the local mean lunar time τ of earthquake occurrence and their fault trends is studied in this paper. The local mean lunar times τ of 53 earthquakes in 24 groups are calculated. Because ...The relation between the local mean lunar time τ of earthquake occurrence and their fault trends is studied in this paper. The local mean lunar times τ of 53 earthquakes in 24 groups are calculated. Because the tidal generation force arisen by the moon is a cyclic function of about 12 hours 25 minutes in the main, the two tidal generation forces anywhere in the earth arising by the moon are equal in general when the moon lies to the two sites of 180° interval of local mean lunar time. Based on this phenomenon the values Δ τ of τ 1- τ 2 or τ 1-τ 2±180° of two earthquakes occurring repetitiously in the same place are also calculated. The calculated results show that if the fault trends of the two earthquakes in the same place is near, the Δ τ is usually smaller and if the fault trends of the two ones is not near, the Δ τ is usually larger and the distribution of the local mean lunar time τ of earthquakes in different places is dispersive even if fault trends of these earthquakes are near, and the τ does not concentrate on the lower and upper transit of the moon. The above phenomena clear up that the triggering earthquake of earth solid tide arisen by the moon is relative with the fault trends of earthquakes and we ought to think over the difference of environmental conditions of earthquake preparation of each seismogenic zone and can not make statistics to earthquakes in different places when we study the relation between the solid earth tide arisen by the moon and earthquakes.展开更多
Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study i...Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.展开更多
In this paper, the process of source dynamics of the Jingtai earthquake (M= 6. 2) is studied on the basis of both earth resistivity changes before the event and the spatial directivity of single-observatory magnitude ...In this paper, the process of source dynamics of the Jingtai earthquake (M= 6. 2) is studied on the basis of both earth resistivity changes before the event and the spatial directivity of single-observatory magnitude measurements of the seismic network of China. The following conclusions are obtained: the NW-SE directional tension stress (or the one about in the direction) inside the source region was enhanced during the short period from three to five months before the event, and done still further about in twenty odd days before the event, so that it finally leads the fault in about the EW strike to produce dislocation in NWW-SEE direction. Finally, this dislocation pattern caused the strong ground vibration to be received at the seismic observatories which were located in the NWW and SEE directions of the epicenter, while the weak vibration to be received at the ones in NE and south directions of the epicenter. At last, understandings on the imminent earthquake prediction through earth resistivity method are set forth.展开更多
This paper presents and tests three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types when the MG transferred to the islanding mode. The main contribution of this work is incl...This paper presents and tests three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types when the MG transferred to the islanding mode. The main contribution of this work is including the models of all micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included with the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the islanding mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current pro-tection relays. With using TN earthing system, touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited values during islanding mode. For the two others earthing systems (TT and IT), fault currents are small and nearly equal to the over load currents which make over current protection relay can not differentiate between fault currents and overload currents. All models of micro sources, earthing systems, inverters and control schemes are built using Matlab?/Simulink? environment.展开更多
This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the ...This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.展开更多
The compensation current of the arc-suppressing coil makes the phase and amplitude of zero-sequence measurement current of the earthed fault feeder to vary. It is very hard to detect the fault feeder by using existing...The compensation current of the arc-suppressing coil makes the phase and amplitude of zero-sequence measurement current of the earthed fault feeder to vary. It is very hard to detect the fault feeder by using existing detectors based on single method. In this paper, integrative feeder selection strategy—zero sequence current increment method and the direction of transient current— is put forward. Based on the integrative feeder selection strategy, the design of fault-feeder selection device for one-phase-to ground fault on resonance grounding system is presented. For the purpose of testing and validating the operating principle of the device, the experiment of single-phase-to-ground fault has been carried out on the simulation of 1.2 kV power network. The results from many repeat experiments show that stability of the fault selection device is satisfactory.展开更多
Gd5Si2Ge2.2 alloy was synthesized by arcmelting and its phase components, microstructure, and especially the line features were investigated by X- ray diffraction (XRD), scanning-electron microscope (SEM), energy-...Gd5Si2Ge2.2 alloy was synthesized by arcmelting and its phase components, microstructure, and especially the line features were investigated by X- ray diffraction (XRD), scanning-electron microscope (SEM), energy-dispersive spectroscopy (EDS), and transmission-electron microscope (TEM). Gd5Si2Ge2.2 consists of Gd5Si2Ge2-type and GdGe-type phases and presents eutectic characteristics. There are many regular line features on the Gd5Si2Ge2-type phase according to SEM. EDS shows that the line feature is not the Gd5 (Si,Ge)3-type phase because Gd content decreases at the line features. Two types of line features are found in the fine microstructure of Gd5Si2Ge2-type phase by TEM. Selected area diffraction (SAD) confirms that both line features are not the secondary phase or twins. There is no changes observed in the microstructure of Gd5Si2Ge2 2 from room temperature to 1400 ℃ with in situ high temperature optical microscope, therefore, it is deduced that the line features observed by SEM are formed during the solidification.展开更多
The highest priorities of any civilized country are in providing interests of social safety.The anthropogenic influence on geological environment is becoming greater because of the human activities increase. That’s w...The highest priorities of any civilized country are in providing interests of social safety.The anthropogenic influence on geological environment is becoming greater because of the human activities increase. That’s why anthropogenic-tectonic earthquake problem has become important recently.It appeared as a hypothesis in the 30 s and became much clearer in 60 s.The anthropogenic-tectonic earthquake epiceneters are located not far from the surface and,as a rule。展开更多
文摘This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient impedance and dominant transient frequency. The Discrete Fourier Transform (DFT) method is used to determine the dominant transient frequency. The values of voltage and current earth modes are calculated in the period of the dominant transient frequency, then the transient impedance can be determined, from which we can calculate the earth capacitance. The calculated capacitance gives an indication about if the feeder is faulted or not. The algorithm is less dependent on the fault resistance and the faulted feeder parameters; it mainly depends on the background network. The network is simulated by ATP/EMTP program. Several different fault conditions are covered in the simulation process, different fault inception angles, fault locations and fault resistances.
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
文摘This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transient residual currents, which are very sensitive for earth faults detection. The transient values of residual currents are calculated for each feeder in the network and used as an earth fault indicator. The flow of residual currents is investigated. It is found that the residual current for the faulted feeder is equal to the summation of all residual currents for all other healthy feedersl Based on this investigation, a differential technique is proposed. A percentage restrain performance is proposed to ensure the selectivity and security of the algorithm. The transient algorithm is very sensitive for earth fault incidence. To apply the proposed algorithm, the residual currents can be measured easily by one sensor for each feeder with no need to voltage measurement. The proposed algorithm is less dependent on the fault resistance and the faulted feeder parameters. The network is simulated by ATP/EMTP program. Different fault conditions are covered in the simulation process: different fault inception angles, fault locations and fault resistances.
基金This work was supported in part by National Science Foundation of China(No.51907097)National Key R&D Program of China(No.2020YFF0305800)+1 种基金the Full-time Postdoc Research and Development Fund of Sichuan University in China(No.2019SCU12003)the Applied Basic Research of Sichuan Province(No.2020YJ0012).
文摘Secondary earth faults occur frequently in power distribution networks under harsh weather conditions.Owing to its characteristics,a secondary earth fault is typically hidden within the transient of the first fault.Therefore,most researchers tend to focus on a feeder with single fault while disregarding secondary faults.This paper presents a fault feeder identification method that considers secondary earth faults in a non-effectively grounded distribution network.First,the wavelet singular entropy method is used to detect a secondary fault event.This method can identify the moment at which a secondary fault occurs.The zero-sequence current data can be categorized into two fault stages.The first and second fault stages correspond to the first and secondary faults,respectively.Subsequently,a similarity matrix containing the time-frequency transient information of the zero-sequence current at the two fault stages is defined to identify the fault feeders.Finally,to confirm the effectiveness and reliability of the proposed method,we conduct simulation experiments and an adaptability analysis based on an electromagnetic transient program.
基金Project supported by the National Natural Science Foundation of China (40272094)
文摘Intrusions in the Zhangbaling uplift zone and the eastern margin of the Dabie orogenic belt belong to the syntectonic intrusions developed during the strike-slip stage in the southern segment of the Tan-Lu fault zone. However, characteristics of rare earth elements show that intrusions in the Zhangbaling uplift zone have the characteristics of mantle source type and those in the eastern margin of Dabie belt are the typical crust source type. Therefore, Au-deposits related to the intrusions in the Zhangbaling uplift zone are developed better than those in the eastern margin of the Dabieshan. The research results of the rare earth elements coincide with the studies of geophysics, tectonic setting and stable isotope. It is further indicated that the rare earth elements offer effective approach to tracing the material sources of magmatic rocks.
文摘The relation between the local mean lunar time τ of earthquake occurrence and their fault trends is studied in this paper. The local mean lunar times τ of 53 earthquakes in 24 groups are calculated. Because the tidal generation force arisen by the moon is a cyclic function of about 12 hours 25 minutes in the main, the two tidal generation forces anywhere in the earth arising by the moon are equal in general when the moon lies to the two sites of 180° interval of local mean lunar time. Based on this phenomenon the values Δ τ of τ 1- τ 2 or τ 1-τ 2±180° of two earthquakes occurring repetitiously in the same place are also calculated. The calculated results show that if the fault trends of the two earthquakes in the same place is near, the Δ τ is usually smaller and if the fault trends of the two ones is not near, the Δ τ is usually larger and the distribution of the local mean lunar time τ of earthquakes in different places is dispersive even if fault trends of these earthquakes are near, and the τ does not concentrate on the lower and upper transit of the moon. The above phenomena clear up that the triggering earthquake of earth solid tide arisen by the moon is relative with the fault trends of earthquakes and we ought to think over the difference of environmental conditions of earthquake preparation of each seismogenic zone and can not make statistics to earthquakes in different places when we study the relation between the solid earth tide arisen by the moon and earthquakes.
基金Special Scientific Found for Seismic Industry Under Grant No.201008005
文摘Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.
文摘In this paper, the process of source dynamics of the Jingtai earthquake (M= 6. 2) is studied on the basis of both earth resistivity changes before the event and the spatial directivity of single-observatory magnitude measurements of the seismic network of China. The following conclusions are obtained: the NW-SE directional tension stress (or the one about in the direction) inside the source region was enhanced during the short period from three to five months before the event, and done still further about in twenty odd days before the event, so that it finally leads the fault in about the EW strike to produce dislocation in NWW-SEE direction. Finally, this dislocation pattern caused the strong ground vibration to be received at the seismic observatories which were located in the NWW and SEE directions of the epicenter, while the weak vibration to be received at the ones in NE and south directions of the epicenter. At last, understandings on the imminent earthquake prediction through earth resistivity method are set forth.
文摘This paper presents and tests three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types when the MG transferred to the islanding mode. The main contribution of this work is including the models of all micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included with the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the islanding mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current pro-tection relays. With using TN earthing system, touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited values during islanding mode. For the two others earthing systems (TT and IT), fault currents are small and nearly equal to the over load currents which make over current protection relay can not differentiate between fault currents and overload currents. All models of micro sources, earthing systems, inverters and control schemes are built using Matlab?/Simulink? environment.
文摘This paper presents, tests and compares three earthing systems (TT, TN and IT) for Micro-Grid (MG) protection against various fault types during the connected mode. The main contribution of this work is including the models of all the micro sources which interfaced to the MG by power electronic inverters. Inverters in turns are provided with current limiters and this also included in the inverter models to exactly simulate the real situation in the MG during fault times. Results proved that the most suitable earthing system for MG protection during the connecting mode is the TN earthing system. That system leads to a suitable amount of fault current sufficient to activate over current protection relays. With using TN system, Touch voltages at the faulted bus and all other consumer’s buses are less than the safety limited value if current limiter is included with the transformer of the main grid which connects MG. For the two others earthing systems (TT and IT), fault current is small and nearly equal to the over load current which make over current protection relay can not differentiate between fault current and overload current. All models of micro sources, earthing systems, inverters, main grid and control schemes are built using Matlab?/Simulink? environment.
文摘The compensation current of the arc-suppressing coil makes the phase and amplitude of zero-sequence measurement current of the earthed fault feeder to vary. It is very hard to detect the fault feeder by using existing detectors based on single method. In this paper, integrative feeder selection strategy—zero sequence current increment method and the direction of transient current— is put forward. Based on the integrative feeder selection strategy, the design of fault-feeder selection device for one-phase-to ground fault on resonance grounding system is presented. For the purpose of testing and validating the operating principle of the device, the experiment of single-phase-to-ground fault has been carried out on the simulation of 1.2 kV power network. The results from many repeat experiments show that stability of the fault selection device is satisfactory.
文摘Gd5Si2Ge2.2 alloy was synthesized by arcmelting and its phase components, microstructure, and especially the line features were investigated by X- ray diffraction (XRD), scanning-electron microscope (SEM), energy-dispersive spectroscopy (EDS), and transmission-electron microscope (TEM). Gd5Si2Ge2.2 consists of Gd5Si2Ge2-type and GdGe-type phases and presents eutectic characteristics. There are many regular line features on the Gd5Si2Ge2-type phase according to SEM. EDS shows that the line feature is not the Gd5 (Si,Ge)3-type phase because Gd content decreases at the line features. Two types of line features are found in the fine microstructure of Gd5Si2Ge2-type phase by TEM. Selected area diffraction (SAD) confirms that both line features are not the secondary phase or twins. There is no changes observed in the microstructure of Gd5Si2Ge2 2 from room temperature to 1400 ℃ with in situ high temperature optical microscope, therefore, it is deduced that the line features observed by SEM are formed during the solidification.
文摘The highest priorities of any civilized country are in providing interests of social safety.The anthropogenic influence on geological environment is becoming greater because of the human activities increase. That’s why anthropogenic-tectonic earthquake problem has become important recently.It appeared as a hypothesis in the 30 s and became much clearer in 60 s.The anthropogenic-tectonic earthquake epiceneters are located not far from the surface and,as a rule。