期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A data assimilation-based forecast model of outer radiation belt electron fluxes 被引量:1
1
作者 Yuan Lei Xing Cao +3 位作者 BinBin Ni Song Fu TaoRong Luo XiaoYu Wang 《Earth and Planetary Physics》 CAS CSCD 2023年第6期620-630,共11页
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ... Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications. 展开更多
关键词 earth’s outer radiation belt data assimilation electron flux forecast model performance evaluation
下载PDF
The 600 keV electron injections in the Earth's outer radiation belt:A statistical study
2
作者 ChaoLing Tang Xu Wang +2 位作者 BinBin Ni ZhengPeng Su JiChun Zhang 《Earth and Planetary Physics》 EI CSCD 2022年第2期149-160,共12页
Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron... Relativistic electron injections are one of the mechanisms of relativistic(≥0.5 MeV) electron enhancements in the Earth’s outer radiation belt. In this study, we present a statistical observation of 600 keV electron injections in the outer radiation belt by using data from the Van Allen Probes. On the basis of the characteristics of different injections, 600 keV electron injections in the outer radiation belt were divided into pulsed electron injections and nonpulsed electron injections. The 600 keV electron injections were observed at 4.5 < L <6.4 under the geomagnetic conditions of 450 nT < AE < 1,450 nT. An L of ~4.5 is an inward limit for 600 keV electron injections. Before the electron injections, a flux negative L shell gradient for ≤0.6 MeV electrons or low electron fluxes in the injected region were observed. For600 keV electron injections at different L shells, the source populations from the Earth’s plasma sheet were different. For 600 keV electron injections at higher L shells, the source populations were higher energy electrons(~200 keV at X ~–9 R_(E)), whereas the source populations for 600 keV electron injections at lower L shells were lower energy electrons(~80 keV at X ~–9 R_(E)). These results are important to further our understanding of electron injections and rapid enhancements of 600 keV electrons in the Earth’s outer radiation belt. 展开更多
关键词 electron injections relativistic electrons the earth’s outer radiation belt plasma sheet Van Allen Probes
下载PDF
Artificial modification of Earth's radiation belts by ground-based very-low-frequency(VLF)transmitters
3
作者 Binbin NI Man HUA +4 位作者 Xudong GU Song FU Zheng XIANG Xing CAO Xin MA 《Science China Earth Sciences》 SCIE EI CSCD 2022年第3期391-413,共23页
Wave-particle interactions play a fundamental role in the dynamic variability of Earth’s donut-shaped radiation belts that are highly populated by magnetically trapped energetic particles and characteristically separ... Wave-particle interactions play a fundamental role in the dynamic variability of Earth’s donut-shaped radiation belts that are highly populated by magnetically trapped energetic particles and characteristically separated by the slot devoid of high energetic electrons.Owing to the continuous accumulation of high-quality wave and particle measurements from multiple satellites in geospace,the important contribution of ground-based very-low-frequency(VLF)transmitter waves to the electron dynamics in the near-Earth space has been unprecedently advanced,in addition to those established findings of the significant effects of a variety of naturally occurring magnetospheric waves.This paper focuses on the artificial modification of Earth’s inner radiation belt and slot by artificial VLF transmitter emissions.We review the global distributions of VLF transmitter waves in geospace,their scattering effects on radiation belt electrons in terms of both theoretical and observational analyses,and diffusion simulation results of wave-particle interactions along with data-model comparisons.We start with a brief review of the radiation belt electron dynamics and an introduction of anthropogenic VLF transmitter waves.Subsequently,we review the global morphology of in situ VLF transmitter waves corresponding to different transmitter locations,including their day-night asymmetry,geographic distributions,seasonal and geomagnetic activity dependence,and wave propagation features.Existed theoretical and observational analyses of electron scattering effects by VLF transmitter waves are then reviewed to approach the underlying physics that can modulate the spatio-temporal variations of the electron radiation belts.Further Fokker-Planck electron diffusion simulations and their comparisons with realistic satellite observations clearly indicate that VLF transmitter emissions can effectively remove energetic electrons to produce a radially bifurcated electron belt,thereby quantitatively confirming the direct link between operations of VLF transmitters at ground and changes of the energetic electron environment in space.We finally discuss the unsolved problems and possible future research in this area,which has important implications for potential mitigation of the natural particle radiation environment with active means. 展开更多
关键词 VLF transmitters Wave-particle interactions Electron precipitation earth’s radiation belts Flux bifurcation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部