In this paper, an improved weighted least squares (WLS), together with autoregressive (AR) model, is proposed to improve prediction accuracy of earth rotation parameters(ERP). Four weighting schemes are develope...In this paper, an improved weighted least squares (WLS), together with autoregressive (AR) model, is proposed to improve prediction accuracy of earth rotation parameters(ERP). Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.展开更多
Time series of Earth rotation parameters were estimated from range data measured by the satellite laser ranging technique to the Laser Geodynamics Satellites(LAGEOS)-1/2 through 2005 to 2010 using the dynamic method...Time series of Earth rotation parameters were estimated from range data measured by the satellite laser ranging technique to the Laser Geodynamics Satellites(LAGEOS)-1/2 through 2005 to 2010 using the dynamic method. Compared with Earth orientation parameter(EOP)C04, released by the International Earth Rotation and Reference Systems Service, the root mean square errors for the measured X and Y of polar motion(PM) and length of day(LOD)were 0.24 and 0.25 milliarcseconds(mas), and 0.068 milliseconds(ms), respectively.Compared with ILRSA EOP, the X and Y of PM and LOD were 0.27 and 0.30 mas, and 0.054 ms, respectively. The time series were analyzed using the wavelet transformation and least squares methods. Wavelet analysis showed obvious seasonal and interannual variations of LOD, and both annual and Chandler variations of PM; however, the annual variation could not be distinguished from the Chandler variation because the two frequencies were very close. The trends and periodic variations of LOD and PM were obtained in the least squares sense, and PM showed semi-annual, annual, and Chandler periods.Semi-annual, annual, and quasi-biennial cycles for LOD were also detected. The trend rates of PM in the X and Y directions were 3.17 and 1.60 mas per year, respectively, and the North Pole moved to 26.8E relative to the crust during 2005—2010. The trend rate of the LOD change was 0.028 ms per year.展开更多
Through analyzing the relationship between gyro dynamic torques produced by the changes of earth rotation parameters (ERP), a method of measuring the earth rotation parameters was proposed and explored by using gyrosc...Through analyzing the relationship between gyro dynamic torques produced by the changes of earth rotation parameters (ERP), a method of measuring the earth rotation parameters was proposed and explored by using gyroscope. The preliminary experiments were carried out using GAT Maglev Gyro Station (which is self-developed by China). Considering the measurement and expanding-application of the earth rotation parameters, some ideas and opinions about the structure design, measurement methods and data processing of gyro were proposed, and some outlook of the expanding-application of the gyroscope in geodetic and geophysical fields were done. The experimental results show that using the high-precision gyroscope to determine the changes of ERP is feasible, with the emergence of ultra-high precision gyro; it is possible for determining the earth rotation parameters by gyro in stead of by current complex space surveying technology.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (2007B51)Natural Science Foundation of China (41174008)
文摘In this paper, an improved weighted least squares (WLS), together with autoregressive (AR) model, is proposed to improve prediction accuracy of earth rotation parameters(ERP). Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.
基金supported by the National Natural Science Foundation of China(41374009)International Science and Technology Cooperation Program of China(2009DFB00130)+2 种基金Public Benefit Scientific Research Project of China(201412001)Shandong Natural Science Foundation of China(ZR2013DM009)the SDUST Research Fund(2014TDJH1010)
文摘Time series of Earth rotation parameters were estimated from range data measured by the satellite laser ranging technique to the Laser Geodynamics Satellites(LAGEOS)-1/2 through 2005 to 2010 using the dynamic method. Compared with Earth orientation parameter(EOP)C04, released by the International Earth Rotation and Reference Systems Service, the root mean square errors for the measured X and Y of polar motion(PM) and length of day(LOD)were 0.24 and 0.25 milliarcseconds(mas), and 0.068 milliseconds(ms), respectively.Compared with ILRSA EOP, the X and Y of PM and LOD were 0.27 and 0.30 mas, and 0.054 ms, respectively. The time series were analyzed using the wavelet transformation and least squares methods. Wavelet analysis showed obvious seasonal and interannual variations of LOD, and both annual and Chandler variations of PM; however, the annual variation could not be distinguished from the Chandler variation because the two frequencies were very close. The trends and periodic variations of LOD and PM were obtained in the least squares sense, and PM showed semi-annual, annual, and Chandler periods.Semi-annual, annual, and quasi-biennial cycles for LOD were also detected. The trend rates of PM in the X and Y directions were 3.17 and 1.60 mas per year, respectively, and the North Pole moved to 26.8E relative to the crust during 2005—2010. The trend rate of the LOD change was 0.028 ms per year.
基金Project(41074006)supported by the National Natural Foundation of China
文摘Through analyzing the relationship between gyro dynamic torques produced by the changes of earth rotation parameters (ERP), a method of measuring the earth rotation parameters was proposed and explored by using gyroscope. The preliminary experiments were carried out using GAT Maglev Gyro Station (which is self-developed by China). Considering the measurement and expanding-application of the earth rotation parameters, some ideas and opinions about the structure design, measurement methods and data processing of gyro were proposed, and some outlook of the expanding-application of the gyroscope in geodetic and geophysical fields were done. The experimental results show that using the high-precision gyroscope to determine the changes of ERP is feasible, with the emergence of ultra-high precision gyro; it is possible for determining the earth rotation parameters by gyro in stead of by current complex space surveying technology.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.