Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her...Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.展开更多
The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, ...The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.展开更多
To better remove the contamination on the surface of a heat-exchanger in urban sewage source heat pump system (USSHPS), this paper analyzes the feasibility of strong self-flushing on the basis of experiments and pre...To better remove the contamination on the surface of a heat-exchanger in urban sewage source heat pump system (USSHPS), this paper analyzes the feasibility of strong self-flushing on the basis of experiments and presents a new on-line self-flushing technique, which alternately flushes part of heat transfer tubes. In addition, operation principles and the structure of the new heat-exchanger are introduced and the feasible economi- cal and technological cleaning plans are given by design calculation and scheme comparison. The result shows that keeping each tube washed for one minute with 5 m/s, the operating cost is lower than ¥5 and when one flushing pump ahemately flushes 10-20 heat exchangers, the saved costs of flushing 10 tubes alternately are over 4 times of the increased costs.展开更多
Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its patterns are discussed. Software is helpful to d...Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its patterns are discussed. Software is helpful to design ground heat exchanger. A project of Chinese Ground Source Heat Pump is introduced and its market is more and more extensive.展开更多
The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat t...The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat transfer of four GHEs was carried out in 2010.Results indicate that the velocity field is disturbed by GHEs.The optimal orientation strategy of side pipe is that the upward pipe is located upstream and the downward pipe downstream.The space between GHEs should be appropriately adjusted,depending on the direction and flow velocity.Groups of GHEs should be installed perpendicular to the mainstream in a single row,but if the acreage does not meet the requirements,GHEs should be installed in staggered multiple rows.Fewer GHEs parallel to the mainstream strengthen the heat transfer.Moreover,numerical results agree well with the test data,with the maximum relative error being less than 7.7%.展开更多
A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numeri...A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.展开更多
From the viewpoints of environmental conservation and energy efficiency,seawater-source heat pump system(SWHP) to provide district cooling and heating is applied in coastal areas.Based on the system,a heat transfer mo...From the viewpoints of environmental conservation and energy efficiency,seawater-source heat pump system(SWHP) to provide district cooling and heating is applied in coastal areas.Based on the system,a heat transfer model was established for cast heat exchanger(CHE) adopted by SWHP systems.The CHE consists of pipes immersed in the seawater and used for transferring heat between the seawater and the heat exchanger pipes of SWHP system.An experimental study was carried out to test the validity of the model.A program was developed in VB language and the effects of inlet temperature,flow rate of the secondary refrigerant and length of CHE on the results were investigated.The results of the numerical simulation are in consistence with the experiments in both winter and summer conditions.As a result,application of SWHP systems with CHE in coastal areas in China is feasible due to the favorable geographical conditions and environment.展开更多
This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the conditi...This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.展开更多
Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers bu...Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.展开更多
The liver has many significant functions,such as detoxification,the urea cycle,gluconeogenesis,and protein synthesis.Systemic diseases,hypoxia,infections,drugs,and toxins can easily affect the liver,which is extremely...The liver has many significant functions,such as detoxification,the urea cycle,gluconeogenesis,and protein synthesis.Systemic diseases,hypoxia,infections,drugs,and toxins can easily affect the liver,which is extremely sensitive to injury.Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage.The primary regulator of intracellular pH in the liver is the Na+/H+exchanger(NHE).Physiologically,NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline.Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensinconverting enzyme 2.In severe cases of coronavirus disease 2019,high angiotensin II levels may cause NHE overstimulation and lipid accumulation in the liver.NHE overstimulation can lead to hepatocyte death.NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver.Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation,the virus may indirectly cause an increase in fibrinogen and D-dimer levels.NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release.Also,NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver.Increasing NHE3 activity leads to Na+loading,which impairs the containment and fluidity of bile acid.NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid,thus triggering systemic damage.Unlike other tissues,tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine.Thus,increased luminal Na+leads to diarrhea and cytokine release.Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.展开更多
A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-condit...A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-conditioning system.The HGCHP uses a supplemental heat rejecter to dissipate extra thermal energy to guarantee underground soil heat balance.The software EnergyPlus is employed to simulate the project and design the heat flow of the cooling tower and the borehole heat exchanger(BHE).Then two feasible control strategies for the cooling tower and the borehole heat exchanger are proposed.The energy-saving potential of the building envelope is analyzed in terms of the surface color of the wall/roof.With the same terminal system,it is found that in the cooling season the heat flow of the insulated building with black wall/roof is 1.2 times more than that with white wall/roof.With the same insulated building and gray wall/roof,it is concluded that the heat pump units for a primary air fan-coil system show an annual energy consumption increase of 44.7 GJ compared with a radiant floor system.展开更多
This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calcu...This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.展开更多
The experimental performance of small-sized ground-coupled heat pump (GCHP) is researched intensively. However, there are little data documenting the operation performance of existing large-sized GCHP system. We prese...The experimental performance of small-sized ground-coupled heat pump (GCHP) is researched intensively. However, there are little data documenting the operation performance of existing large-sized GCHP system. We presented the actual performance measurement of a GCHP installed for apartment buildings in Wuhan, Hubei province, P. R. China. The system was constructed with a closed vertical typed ground heat exchanger with a total pipe length of 32 000 m. During one year, various operating parameters were monitored, including the outdoor temperature, the flow rate, the electrical consumption, and the water temperature. The seasonal coefficients of performances of the heat pumps and the system based on the measured data were found to be 4.01 and 2.96 in the cooling season, and 3.54 and 2.86 in the heating season, respectively. The GCHP system was more economical than the air-source room air conditioner in the energy efficiency which was increased by 29% in cooling mode and 50% in heating mode. There was an obvious heat imbalance of soil between the injection rate and the extraction rate in the residential GCHP system operation.展开更多
A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated...A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated four SERF magnetometer channels, which provides sufficient spatial resolution for magnetoencephalography(MEG). The four channels share the same laser beam for the best cancellation of common mode noise due to laser fluctuations. With gradient measurement, the sensitivities of the four sensors are better than 6 fT/Hz^(1/2), which is also good enough for MEG measurement. The vapor cell is heated to 160℃ by a novel nonmagnetic current-heating structure. Our sensor with high spatial resolution and compact size is particularly suitable for MEG systems.展开更多
At present, there are relevant scientific materials on the cellular and molecular mechanisms of electrogenic Na/K pump function and structure, as well as on the potential- and ligand-activated ionic channels in the me...At present, there are relevant scientific materials on the cellular and molecular mechanisms of electrogenic Na/K pump function and structure, as well as on the potential- and ligand-activated ionic channels in the membrane. However, the role of electrogenic Na/K pump in regulation of semipermeable properties of cell membrane has not been elucidated yet, which is due to the fact that our knowledge about the biophysical properties of cell membrane is based on the conductive membrane theory of Hodgkin-Huxley-Katz, which is developed on internally perfused squid axon and lacks intracellular metabolism. Thus, the accumulated abundance of data on the role of G-proteins-dependent intracellular signaling system in regulation of Na/K pump activity and biophysical properties of cell membrane presumes fundamental revision of some statements of membrane theory. The aim of the present review is to briefly demonstrate our and literature data on cell hydration-induced auto-regulation of Na/K pump as well as on its role in metabolic control of semipermeable properties and excitability of neuronal membrane, which are omitted in the study of internally perfused squid axon.展开更多
文摘Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.
文摘The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50578048)
文摘To better remove the contamination on the surface of a heat-exchanger in urban sewage source heat pump system (USSHPS), this paper analyzes the feasibility of strong self-flushing on the basis of experiments and presents a new on-line self-flushing technique, which alternately flushes part of heat transfer tubes. In addition, operation principles and the structure of the new heat-exchanger are introduced and the feasible economi- cal and technological cleaning plans are given by design calculation and scheme comparison. The result shows that keeping each tube washed for one minute with 5 m/s, the operating cost is lower than ¥5 and when one flushing pump ahemately flushes 10-20 heat exchangers, the saved costs of flushing 10 tubes alternately are over 4 times of the increased costs.
文摘Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its patterns are discussed. Software is helpful to design ground heat exchanger. A project of Chinese Ground Source Heat Pump is introduced and its market is more and more extensive.
文摘The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat transfer of four GHEs was carried out in 2010.Results indicate that the velocity field is disturbed by GHEs.The optimal orientation strategy of side pipe is that the upward pipe is located upstream and the downward pipe downstream.The space between GHEs should be appropriately adjusted,depending on the direction and flow velocity.Groups of GHEs should be installed perpendicular to the mainstream in a single row,but if the acreage does not meet the requirements,GHEs should be installed in staggered multiple rows.Fewer GHEs parallel to the mainstream strengthen the heat transfer.Moreover,numerical results agree well with the test data,with the maximum relative error being less than 7.7%.
基金Supported by Tianjin Scientific Development Foundation (No.013112811-1) .
文摘A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.
基金Project(2006BAJ04A15-03) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period
文摘From the viewpoints of environmental conservation and energy efficiency,seawater-source heat pump system(SWHP) to provide district cooling and heating is applied in coastal areas.Based on the system,a heat transfer model was established for cast heat exchanger(CHE) adopted by SWHP systems.The CHE consists of pipes immersed in the seawater and used for transferring heat between the seawater and the heat exchanger pipes of SWHP system.An experimental study was carried out to test the validity of the model.A program was developed in VB language and the effects of inlet temperature,flow rate of the secondary refrigerant and length of CHE on the results were investigated.The results of the numerical simulation are in consistence with the experiments in both winter and summer conditions.As a result,application of SWHP systems with CHE in coastal areas in China is feasible due to the favorable geographical conditions and environment.
文摘This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.
基金Project(2006BAJ03A10) supported by the National Key Technology R&D Program of China
文摘Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.
文摘The liver has many significant functions,such as detoxification,the urea cycle,gluconeogenesis,and protein synthesis.Systemic diseases,hypoxia,infections,drugs,and toxins can easily affect the liver,which is extremely sensitive to injury.Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage.The primary regulator of intracellular pH in the liver is the Na+/H+exchanger(NHE).Physiologically,NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline.Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensinconverting enzyme 2.In severe cases of coronavirus disease 2019,high angiotensin II levels may cause NHE overstimulation and lipid accumulation in the liver.NHE overstimulation can lead to hepatocyte death.NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver.Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation,the virus may indirectly cause an increase in fibrinogen and D-dimer levels.NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release.Also,NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver.Increasing NHE3 activity leads to Na+loading,which impairs the containment and fluidity of bile acid.NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid,thus triggering systemic damage.Unlike other tissues,tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine.Thus,increased luminal Na+leads to diarrhea and cytokine release.Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
文摘A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-conditioning system.The HGCHP uses a supplemental heat rejecter to dissipate extra thermal energy to guarantee underground soil heat balance.The software EnergyPlus is employed to simulate the project and design the heat flow of the cooling tower and the borehole heat exchanger(BHE).Then two feasible control strategies for the cooling tower and the borehole heat exchanger are proposed.The energy-saving potential of the building envelope is analyzed in terms of the surface color of the wall/roof.With the same terminal system,it is found that in the cooling season the heat flow of the insulated building with black wall/roof is 1.2 times more than that with white wall/roof.With the same insulated building and gray wall/roof,it is concluded that the heat pump units for a primary air fan-coil system show an annual energy consumption increase of 44.7 GJ compared with a radiant floor system.
基金Supported by National Natural Science Foundation of China(No.1272263)
文摘This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.
基金Funded by National Natural Science Foundation of China (Grant No. 51078160)
文摘The experimental performance of small-sized ground-coupled heat pump (GCHP) is researched intensively. However, there are little data documenting the operation performance of existing large-sized GCHP system. We presented the actual performance measurement of a GCHP installed for apartment buildings in Wuhan, Hubei province, P. R. China. The system was constructed with a closed vertical typed ground heat exchanger with a total pipe length of 32 000 m. During one year, various operating parameters were monitored, including the outdoor temperature, the flow rate, the electrical consumption, and the water temperature. The seasonal coefficients of performances of the heat pumps and the system based on the measured data were found to be 4.01 and 2.96 in the cooling season, and 3.54 and 2.86 in the heating season, respectively. The GCHP system was more economical than the air-source room air conditioner in the energy efficiency which was increased by 29% in cooling mode and 50% in heating mode. There was an obvious heat imbalance of soil between the injection rate and the extraction rate in the residential GCHP system operation.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2016YFA0301500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07030000)the National Natural Science Foundation of China(Grant No.11474347)
文摘A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated four SERF magnetometer channels, which provides sufficient spatial resolution for magnetoencephalography(MEG). The four channels share the same laser beam for the best cancellation of common mode noise due to laser fluctuations. With gradient measurement, the sensitivities of the four sensors are better than 6 fT/Hz^(1/2), which is also good enough for MEG measurement. The vapor cell is heated to 160℃ by a novel nonmagnetic current-heating structure. Our sensor with high spatial resolution and compact size is particularly suitable for MEG systems.
文摘At present, there are relevant scientific materials on the cellular and molecular mechanisms of electrogenic Na/K pump function and structure, as well as on the potential- and ligand-activated ionic channels in the membrane. However, the role of electrogenic Na/K pump in regulation of semipermeable properties of cell membrane has not been elucidated yet, which is due to the fact that our knowledge about the biophysical properties of cell membrane is based on the conductive membrane theory of Hodgkin-Huxley-Katz, which is developed on internally perfused squid axon and lacks intracellular metabolism. Thus, the accumulated abundance of data on the role of G-proteins-dependent intracellular signaling system in regulation of Na/K pump activity and biophysical properties of cell membrane presumes fundamental revision of some statements of membrane theory. The aim of the present review is to briefly demonstrate our and literature data on cell hydration-induced auto-regulation of Na/K pump as well as on its role in metabolic control of semipermeable properties and excitability of neuronal membrane, which are omitted in the study of internally perfused squid axon.