Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06...Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06,2023,a devastating M_(W)7.7 earthquake struck Türkiye at 01:17 am local time(01:17 UTC).In this regard,near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures.Additionally,the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event.Moreover,the effect of Pulse-Like(PL)and Non-Pulse-Like(NPL)ground motion on a representative RC frame structure built as per the Türkiye code was investigated.The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter.Moreover,the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1.Finally,the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter,indicated that PL ground motions led to more significant damage compared to NPL ground motions.展开更多
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha...On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.展开更多
In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1...In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface r...Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories.展开更多
We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for cont...We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.展开更多
We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and str...We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and strong-motion data.The teleseismic rupture models of the both events were obtained approximately 88 and 55 minutes after their occurrences,respectively.The rupture models indicated that the first event was an asymmetric bilateral event with ruptures mainly propagating to the northeast,while the second one was a unilateral event with ruptures propagating to the west.This information could be useful in locating the meizoseismal areas.Compared with teleseismic models,the strong-motion models showed relatively higher resolution.A noticeable difference was found for the M_(W)7.6 earthquake,for which the strong-motion models shows a bilateral event,rather than a unilateral event,but the dominant rupture direction is still westward.Nevertheless,all strong-motion models are consistent with the teleseismic models in terms of magnitudes,durations,and dominant rupture directions.This suggests that both teleseismic and strong-motion data can be used for fast determination of major source characteristics.In contrast,the strong-motion data would be preferable in future emergency responses since they are recorded earlier and have a better resolution ability on the source ruptures.展开更多
The paper is devoted to analysis of hydrogeological, geomagnetic and seismic response to the two great remote geophysical events, 2022 Tonga volcano eruption and 2020-2023 Türkiye earthquakes in Georgia (Caucasus...The paper is devoted to analysis of hydrogeological, geomagnetic and seismic response to the two great remote geophysical events, 2022 Tonga volcano eruption and 2020-2023 Türkiye earthquakes in Georgia (Caucasus). The geophysical observation system in Georgia, namely, water level stations in the network of deep wells, atmospheric pressure and the geomagnetic sensors of the Dusheti Geophysical Observatory (DGO) as well as seismic data in Garni Observatory (Armenia) respond to the Tonga event by anomalies in the time series. These data show that there are two types of respond: infrasound disturbances in atmospheric pressure and seismic waves in the Earth generated by the eruption. After Tonga eruption January 15 at 04:21 UTC three groups of N-shaped waveforms were registered in the water level corresponding to the global propagation characteristics of the N-shaped waveform of infrasound signals on the barograms generated by eruption at the distance ~15,700 km: they were identified as the Lamb wave, a surface wave package running in the atmosphere with a velocity around ~314 m/s. The paper also presents the WL reactions to three strong EQs that occur in Türkiye 2020-2023, namely Elazığ, Van and Türkiye-Syria EQs. WL in Georgian well network reacts to these events by anomalies of different intensity, which points to the high sensitivity of hydrosphere to remote (several hundred km) strong EQs. The intensity and character of WL reactions depend strongly on the local hydrogeological properties of rocks, surrounding the well.展开更多
For earthquakes (M≥4.0) occurring along and around the East Anatolian fault zone and the Dead Sea fault zone within ten years immediately before the MW7.8 Gaziantep earthquake,Türkiye,of February 6,2023,we explo...For earthquakes (M≥4.0) occurring along and around the East Anatolian fault zone and the Dead Sea fault zone within ten years immediately before the MW7.8 Gaziantep earthquake,Türkiye,of February 6,2023,we explored the correlation between seismicity and the earth's rotation.We statistically evaluated the correlation using the Schuster's test.The results are quantitatively assessed by a p-value.We found a clear downward trend in the p-values from early 2020 to late 2022 in the studied region.We also obtained a spatial distribution of the p-values showing a low p-value area near the northeastern end of the aftershock zone.Although the stress induced by the rotation of the earth is very weak,it could control the earthquake occurrence when the focal medium is loaded to the critical state to release a large earthquake.The decrease in the b-value in the Gutenberg-Richter (G-R) relation is considered in the form of the tectonic stress increase in the crust.We investigated the b-value as a function of time in the study region.We found that the b-value had decreased for about eleven years before the p-value started to decrease,with a relative reduction of 57%.Therefore,the result of the lower p-values obtained in the present study infers that the earthquakes were dominated by the earth's rotation prior to the MW7.8 Türkiye earthquake due to a critical state of the focal region.展开更多
On 6 February 2023,two 7.8 magnitude earthquakes consecutively hit south-central Türkiye,causing great concern from all governments,the United Nations,academia,and all sectors of society.Analyses indicate that th...On 6 February 2023,two 7.8 magnitude earthquakes consecutively hit south-central Türkiye,causing great concern from all governments,the United Nations,academia,and all sectors of society.Analyses indicate that there is also a high possibility of strong earthquakes with a magnitude of 7.8 or above occurring in the western region of China in the coming years.China is a country that is highly susceptible to catastrophic disasters such as earthquakes,floods,and other natural calamities,which can cause significant damages to both human life and property,as well as widespread impacts on the society.Currently,China's capacity for disaster prevention and control is still limited.In order to effectively reduce the impact of catastrophic disasters,ensure the safety of people's lives and property to the greatest extent possible,maintain social stability in high-risk areas,and ensure high-quality and sustainable regional development,it is urgent to improve the seismic resistance level of houses and critical infrastructure in high earthquake risk zones and increase the earthquake-resistant design level of houses in high-risk fault areas with frequent seismic activities;significantly enhance the ability to defend against extreme weather and ocean disasters in economically developed areas along the southeastern coast,as well as the level of fortification in response to extreme meteorological and hydrological disasters of coastal towns/cities and key infrastructure;vigorously enhance the emergency response capacity and disaster risk prevention level in western and ethnic minority regions;comprehensively improve the defense level of residential areas and major infrastructure in high geological hazard risk zones with flash floods,landslides,and mudslides;systematically promote national disaster prevention and mitigation education;and greatly enhance the societal disaster risk reduction ability,including catastrophic insurance.展开更多
Preparation of accurate and up-to-date susceptibility maps at the regional scale is mandatory for disaster mitigation,site selection,and planning in areas prone to multiple natural hazards.In this study,we proposed a ...Preparation of accurate and up-to-date susceptibility maps at the regional scale is mandatory for disaster mitigation,site selection,and planning in areas prone to multiple natural hazards.In this study,we proposed a novel multi-hazard susceptibility assessment approach that combines expert-based and supervised machine learning methods for landslide,flood,and earthquake hazard assessments for a basin in Elazig Province,Türkiye.To produce the landslide susceptibility map,an ensemble machine learning algorithm,random forest,was chosen because of its known performance in similar studies.The modified analytical hierarchical process method was used to produce the flood susceptibility map by using factor scores that were defined specifically for the area in the study.The seismic hazard was assessed using ground motion parameters based on Arias intensity values.The univariate maps were synthesized with a Mamdani fuzzy inference system using membership functions designated by expert.The results show that the random forest provided an overall accuracy of 92.3%for landslide susceptibility mapping.Of the study area,41.24%were found prone to multi-hazards(probability value>50%),but the southern parts of the study area are more susceptible.The proposed model is suitable for multi-hazard susceptibility assessment at a regional scale although expert intervention may be required for optimizing the algorithms.展开更多
文摘Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06,2023,a devastating M_(W)7.7 earthquake struck Türkiye at 01:17 am local time(01:17 UTC).In this regard,near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures.Additionally,the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event.Moreover,the effect of Pulse-Like(PL)and Non-Pulse-Like(NPL)ground motion on a representative RC frame structure built as per the Türkiye code was investigated.The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter.Moreover,the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1.Finally,the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter,indicated that PL ground motions led to more significant damage compared to NPL ground motions.
基金Science and Technology Development Fund of Wuhan Institute of Earth Observation,China Earthquake Administration(No.302021-21)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202218).
文摘On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.
基金supported by the National Natural Science Foundation of China(Nos.42074053 and 42374079)the Fundamental Research Funds from the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B30 and JY2022Z02).
文摘In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金funded by the Basic Research Program of the Institute of Earthquake Forecasting,China Earthquake Administration(Grant Nos.CEAIEF20220102,2021IEF0505,and CEAIEF2022050502)the National Natural Science Foundation of China(Grant Nos.42072248 and 42041006)the National Key Research and Development Program of China(Grant Nos.2021YFC3000601-3 and 2019YFE0108900)。
文摘Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories.
基金jointly supported by the National Key R&D Program (No.2022YFF0800601)the Istanbul Technical University Research Fund (ITU-BAP)+1 种基金the Alexander von Humboldt Foundation Research Fellowship Award for providing computing facilities through the Humboldt-Stiftung Follow-Up Programthe University of California,Riverside。
文摘We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.
基金supported by the National Key Research and Development Program of China(2022YFF0800603).
文摘We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and strong-motion data.The teleseismic rupture models of the both events were obtained approximately 88 and 55 minutes after their occurrences,respectively.The rupture models indicated that the first event was an asymmetric bilateral event with ruptures mainly propagating to the northeast,while the second one was a unilateral event with ruptures propagating to the west.This information could be useful in locating the meizoseismal areas.Compared with teleseismic models,the strong-motion models showed relatively higher resolution.A noticeable difference was found for the M_(W)7.6 earthquake,for which the strong-motion models shows a bilateral event,rather than a unilateral event,but the dominant rupture direction is still westward.Nevertheless,all strong-motion models are consistent with the teleseismic models in terms of magnitudes,durations,and dominant rupture directions.This suggests that both teleseismic and strong-motion data can be used for fast determination of major source characteristics.In contrast,the strong-motion data would be preferable in future emergency responses since they are recorded earlier and have a better resolution ability on the source ruptures.
文摘The paper is devoted to analysis of hydrogeological, geomagnetic and seismic response to the two great remote geophysical events, 2022 Tonga volcano eruption and 2020-2023 Türkiye earthquakes in Georgia (Caucasus). The geophysical observation system in Georgia, namely, water level stations in the network of deep wells, atmospheric pressure and the geomagnetic sensors of the Dusheti Geophysical Observatory (DGO) as well as seismic data in Garni Observatory (Armenia) respond to the Tonga event by anomalies in the time series. These data show that there are two types of respond: infrasound disturbances in atmospheric pressure and seismic waves in the Earth generated by the eruption. After Tonga eruption January 15 at 04:21 UTC three groups of N-shaped waveforms were registered in the water level corresponding to the global propagation characteristics of the N-shaped waveform of infrasound signals on the barograms generated by eruption at the distance ~15,700 km: they were identified as the Lamb wave, a surface wave package running in the atmosphere with a velocity around ~314 m/s. The paper also presents the WL reactions to three strong EQs that occur in Türkiye 2020-2023, namely Elazığ, Van and Türkiye-Syria EQs. WL in Georgian well network reacts to these events by anomalies of different intensity, which points to the high sensitivity of hydrosphere to remote (several hundred km) strong EQs. The intensity and character of WL reactions depend strongly on the local hydrogeological properties of rocks, surrounding the well.
基金supported by the China National Key Research and Development Program(2022YFF0800601)the Special fund of the Institute of Geophysics,China Earthquake Administration (DQJB23Z09)。
文摘For earthquakes (M≥4.0) occurring along and around the East Anatolian fault zone and the Dead Sea fault zone within ten years immediately before the MW7.8 Gaziantep earthquake,Türkiye,of February 6,2023,we explored the correlation between seismicity and the earth's rotation.We statistically evaluated the correlation using the Schuster's test.The results are quantitatively assessed by a p-value.We found a clear downward trend in the p-values from early 2020 to late 2022 in the studied region.We also obtained a spatial distribution of the p-values showing a low p-value area near the northeastern end of the aftershock zone.Although the stress induced by the rotation of the earth is very weak,it could control the earthquake occurrence when the focal medium is loaded to the critical state to release a large earthquake.The decrease in the b-value in the Gutenberg-Richter (G-R) relation is considered in the form of the tectonic stress increase in the crust.We investigated the b-value as a function of time in the study region.We found that the b-value had decreased for about eleven years before the p-value started to decrease,with a relative reduction of 57%.Therefore,the result of the lower p-values obtained in the present study infers that the earthquakes were dominated by the earth's rotation prior to the MW7.8 Türkiye earthquake due to a critical state of the focal region.
基金founded by the Sixth Task of the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),“Integrated Disaster Risk Prevention”(Grant No.2019QZKK0906)。
文摘On 6 February 2023,two 7.8 magnitude earthquakes consecutively hit south-central Türkiye,causing great concern from all governments,the United Nations,academia,and all sectors of society.Analyses indicate that there is also a high possibility of strong earthquakes with a magnitude of 7.8 or above occurring in the western region of China in the coming years.China is a country that is highly susceptible to catastrophic disasters such as earthquakes,floods,and other natural calamities,which can cause significant damages to both human life and property,as well as widespread impacts on the society.Currently,China's capacity for disaster prevention and control is still limited.In order to effectively reduce the impact of catastrophic disasters,ensure the safety of people's lives and property to the greatest extent possible,maintain social stability in high-risk areas,and ensure high-quality and sustainable regional development,it is urgent to improve the seismic resistance level of houses and critical infrastructure in high earthquake risk zones and increase the earthquake-resistant design level of houses in high-risk fault areas with frequent seismic activities;significantly enhance the ability to defend against extreme weather and ocean disasters in economically developed areas along the southeastern coast,as well as the level of fortification in response to extreme meteorological and hydrological disasters of coastal towns/cities and key infrastructure;vigorously enhance the emergency response capacity and disaster risk prevention level in western and ethnic minority regions;comprehensively improve the defense level of residential areas and major infrastructure in high geological hazard risk zones with flash floods,landslides,and mudslides;systematically promote national disaster prevention and mitigation education;and greatly enhance the societal disaster risk reduction ability,including catastrophic insurance.
文摘Preparation of accurate and up-to-date susceptibility maps at the regional scale is mandatory for disaster mitigation,site selection,and planning in areas prone to multiple natural hazards.In this study,we proposed a novel multi-hazard susceptibility assessment approach that combines expert-based and supervised machine learning methods for landslide,flood,and earthquake hazard assessments for a basin in Elazig Province,Türkiye.To produce the landslide susceptibility map,an ensemble machine learning algorithm,random forest,was chosen because of its known performance in similar studies.The modified analytical hierarchical process method was used to produce the flood susceptibility map by using factor scores that were defined specifically for the area in the study.The seismic hazard was assessed using ground motion parameters based on Arias intensity values.The univariate maps were synthesized with a Mamdani fuzzy inference system using membership functions designated by expert.The results show that the random forest provided an overall accuracy of 92.3%for landslide susceptibility mapping.Of the study area,41.24%were found prone to multi-hazards(probability value>50%),but the southern parts of the study area are more susceptible.The proposed model is suitable for multi-hazard susceptibility assessment at a regional scale although expert intervention may be required for optimizing the algorithms.