To determine the studying region of China Testing Center of the Collaboratory for the Study of Earthquake Predictability (CSEP), we adopted the Entire-Magnitude-Range (EMR) method to study the spatial distribution...To determine the studying region of China Testing Center of the Collaboratory for the Study of Earthquake Predictability (CSEP), we adopted the Entire-Magnitude-Range (EMR) method to study the spatial distribution of minimum magnitude of completeness (Mc) in the North-South Trending Seismic Belt (NSTSB) during the period from October 1, 2008 to May 31, 2011. Also bootstrap testing was performed to estimate the uncertainty of Mc, i. e. 8Mc. The results show that Mc (EMR) = 1.6 ± 0. 03 for the whole region. From the spatial distributions of Mc we find that Mc is in the range of Mu 1.3 ±2.0 for most regions. Specifically, the spatial distribution of Mc is consistent with the distribution of stations indicating high monitoring level in the southern part and low monitoring level in the northern part. Events located with less than three stations have great influence on Me. Moreover, the uncertainty of minimum magnitude of completeness 6Mc ranges from 0. 07 to 0.22. The spatial distribution of 6Mc agrees with the seismic rate. The shorter time span may cause larger 6Mc展开更多
Earthquakes and the tsunamis they produce are the world’s most devastating natural disasters, affecting more than 100 countries. Not surprisingly, the problem of earthquake prediction has occupied scientists’ minds ...Earthquakes and the tsunamis they produce are the world’s most devastating natural disasters, affecting more than 100 countries. Not surprisingly, the problem of earthquake prediction has occupied scientists’ minds for more than two thousand years. This paper provides theoretical and practical arguments regarding the possibility of predicting strong and major earthquakes worldwide. Many strong and major earthquakes can be predicted at least two to five months in advance, based on identifying stressed areas that begin to behave abnormally before strong events, with the size of these areas corres</span><span style="font-family:Verdana;">ponding to Dobrovolsky’s formula. We make predictions by combining</span><span style="font-family:Verdana;"> knowledge from many different disciplines: physics, geophysics, seismology, geology, and earth science, among others. An integrated approach is used to identify anomalies and make predictions, including satellite remote sensing techniques and data from ground-based instruments. Terabytes of information are currently processed every day with many different multi-parametric prediction systems applied thereto. Alerts are issued if anomalies are confirmed by a few different systems. It has been found that geophysical patterns of earthquake preparation and stress accumulation are similar for all key seismic regions. The same earthquake prediction methodologies and systems have been successfully applied in global practice since 2013, with the technology successfully used to retrospectively test against more than 700 strong and major earthquakes since 1970. In other words, the earthquake prediction problem has largely been solved. Throughout 2017-2021, results were presented to more than 160 professors from 63 countries.展开更多
The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form o...The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes.展开更多
The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative proba...The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault,which are adopted from relevant studies such as seismological geology,geodesy,and historical earthquake records.Based on the long-term predictions of large earthquakes throughout the world,this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap,motion strongly locked,sparse small-moderate earthquakes,and apparent Coulomb stress increase.This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland.The present loading rate of each fault is first constrained by geodetic observations;the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake.展开更多
Earthquake prediction remains a challenging and difficult task for scientists all over the world.The tidal triggering of earthquakes is being proven by an increasing number of investigations,most of which have shown t...Earthquake prediction remains a challenging and difficult task for scientists all over the world.The tidal triggering of earthquakes is being proven by an increasing number of investigations,most of which have shown that earthquakes are positively correlated with tides,and thus,tides provide a potential tool for earthquake prediction,especially for imminent earthquakes.In this study,publications concerning the tidal triggering of earthquakes were compiled and analyzed with regard to global earthquakes,which were classified into three main types:tectonic,volcanic,and slow earthquakes.The results reveal a high correlation between tectonic earthquakes and tides(mainly for semidiurnal and diurnal tides;14-day tides) before and after the occurrence of significant earthquakes.For volcanic earthquakes,observations of volcanoes on the seafloor and land indicate that volcanic earthquakes in near-shore volcanic areas and mid-ocean ridges have a strong correlation with tidal forces,mostly those with semidiurnal and diurnal periods.For slow earthquakes,the periodicity of the tremor duration is highly correlated with semidiurnal and diurnal tides.In conclusion,the tidal triggering of these three types of earthquakes makes a positive contribution to earthquake preparation and understanding the triggering mechanism,and thus,the prediction of these types of earthquakes should be investigated.However,there are still several inadequacies on this topic that need to be resolved to gain a definitiveanswer regarding the tidal triggering of all earthquakes.The main inadequacies are discussed in this paper from our point of view.展开更多
We statistically validate the 2011-2022 earthquake prediction records of Ada, the sixth finalist of the 2nd China AETA in 2021, who made 147 earthquake predictions (including 60% of magnitude 5.5 earthquakes) with a p...We statistically validate the 2011-2022 earthquake prediction records of Ada, the sixth finalist of the 2nd China AETA in 2021, who made 147 earthquake predictions (including 60% of magnitude 5.5 earthquakes) with a prediction accuracy higher than 70% and a confidence level of 95% over a 12-year period. Since the reliable earthquake precursor signals described by Ada and the characteristics of Alfvén waves match quite well, this paper proposes a hypothesis on how earthquakes are triggered based on the Alfvén (Q G) torsional wave model of Gillette et al. When the plume of the upper mantle column intrudes into the magma and lithosphere of the soft flow layer during the exchange of hot and cold molten material masses deep inside the Earth’s interior during ascent and descent, it is possible to form body and surface plasma sheets under certain conditions to form Alfven nonlinear isolated waves, and Alfven waves often perturb the geomagnetic field, releasing huge heat and kinetic energy thus triggering earthquakes. To explain the complex phenomenon of how Ada senses Alvfen waves and how to locate epicenters, we venture to speculate that special magnetosensory cells in a few human bodies can sense earthquake precursors and attempt to hypothesize an algorithm that analyzes how the human biological nervous system encodes and decodes earthquake precursors and explains how human magnetosensory cells can solve complex problems such as predicting earthquake magnitude and locating epicenters.展开更多
The paper gives an analysis of the displacement time series before and after the March 11,2011 Ms9.0 east Japan earthquake and co-seismic displacements observed at continuous GPS stations in and around China. The resu...The paper gives an analysis of the displacement time series before and after the March 11,2011 Ms9.0 east Japan earthquake and co-seismic displacements observed at continuous GPS stations in and around China. The results showed a broad-scaled related elastic-rebound process and some premonitory horizontal crustal movements to this earthquake over this vast area.展开更多
The great Wenchuan earthquake of M8.0 on May 12, 2008, occurred in an area with dense GPS observation stations in the regional network of the Crustal Movement Observation Network of China (CMONOC). Non-continuous ob...The great Wenchuan earthquake of M8.0 on May 12, 2008, occurred in an area with dense GPS observation stations in the regional network of the Crustal Movement Observation Network of China (CMONOC). Non-continuous observations were carried out at the 1 000 GPS stations of the regional network in 1999, 2001, 2004 and 2007. The horizontal displacements at GPS stations in the regional network before the Wenchuan earthquake show that the main driving tectonic force of the earthquake was the northward pushing of the Indian plate, added at the same time by the pushing of plates on the east and south. In comparison to the displacements in other regions, the horizontal displacements near and around the seismic area is characterized by diverging eastward displacements, that is, the stations to the north of the epicenter moved in the ENE direction while those to the south of epicenter moved in ESE direction with smaller displacements at stations near the epicenter. The accuracy of the estimated strain results is briefly discussed. In order to obtain the anomalous information before the earthquake, the methods of both best fits by trend surface and statistics have been used in the study for finding the future epicentral area from the strain accumulations in the regional network observed from 1999 to 2007 before the Wenchuan earthquake. Besides the epicentral area of the western Kunlun mountain pass earthquake of M8.1 in 2001, the results of best fits by trend surfaces of the strain accumulations from 1999 to 2007 in the regional network show that the Wenchuan earthquake occurred at the eastern fringe of a large area with relatively large accumulations of the first shear strains and also at the northeastern fringe of a smaller area with significant accumulated areal compressions. The statistics of the accumulations of the strain components demonstrates that they also showed anomalous distribution pattems in this area and its neighborhood with increasing accumulations of both shear strains and areal compressions.展开更多
Studies of GPS data carried out before and after the great Wenchuan earthquake of Ms8.0 on May 12, 2008 show that anomalous crustal movements occurred before the earthquake. Data from 4 pre-earthquake observation sess...Studies of GPS data carried out before and after the great Wenchuan earthquake of Ms8.0 on May 12, 2008 show that anomalous crustal movements occurred before the earthquake. Data from 4 pre-earthquake observation sessions at a dense network of stations show that there were prominent broad-ranged long- and midterm anomalies in horizontal displacements and strain and in vertical displacements. Data from the fewer-numbered reference stations of continuous GPS observations since 1999 in West and South China showed short-term preseismic anomalies in horizontal displacements. The detection of co-seismic horizontal displacements at these stations supports the existence of the pre-earthquake anomalies. Results of single-epoch solutions of data from continuous-observation stations near the epicenter also show large imminent anomalies in vertical displacements. Although the Wenchuan earthquake was not predicted, these results give a strong indication that GPS should be the main observation technique for long-term, mid-term, short-term and imminent earthquake predictions.展开更多
The ultra-low-frequency (ULF) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake (EQ) prediction. This paper reviews previous convincing evidence on t...The ultra-low-frequency (ULF) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake (EQ) prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before three major EQs. Then, we present further statistical study on the ULF occurrence, our networks of ULF monitoring in different spatial scales in Japan and finally we present several signal processings to identify the seismogenic emissions by showing latest results for recent large EQs.展开更多
By using the D-InSAR technique, we have acquired the temporal-spatial evolution images of preseismic.cosesimci-postseismic interferometric deformation fields associated with the M 7.9 earthquake of Mani, Tibet on 8 No...By using the D-InSAR technique, we have acquired the temporal-spatial evolution images of preseismic.cosesimci-postseismic interferometric deformation fields associated with the M 7.9 earthquake of Mani, Tibet on 8 November 1997. The analysis of these images reveals the relationships between the temporal-spatial evolution features of the interferometric deformation fields and locking, rupturing, and elastic restoring of the source rupture plane, which represent the processes of strain accumulation, strain release, and postseismic restoration. The result shows that 10 months prior to the Mani event, a left-lateral shear trend appeared in the seismic area, which was in accordance with the earthquake fault in nature. The quantity of local deformation on the north wall was slightly larger than that on the south wall, and the deformation distribution area of the north wall was relatively large. With the event impending, the deformation of the south wall varied increasingly, and the deformation center shifted eastward. Two and half monthd before the event, the west side of the fault was still locked while the east side began to slide, implying that the whole fault would rupture at any moment. These features can be regarded as short-term precursors to this earthquake. Within the period from 16 April 1996 to two and half months before the earthquake, the most remarkable deformation zones appeared in the north and south walls, which were parallel to and about 40 km apart from the fault, with accumulated local displacements of 344 mm and 251 mm on the north and south walls, respectively. The south wall was the active one with larger displacements. Five months after the earthquake, the distribution feature of interferometric fringes was just opposite to that prior to the event, expressing evident right-lateral shear. The recovered displacements are -179 mm on the north wall and -79 mm on the south wall, close to the east side of the fault. However, in the area of the south wall far from the fault there still existed a trend of sinistral motion. The deformation of the north wall was small but recovered fast in a larger area, while the active south wall began to recover from the east section of the fault toward the WSW.展开更多
The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998-2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthq...The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998-2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from China's Mainland since 2000 obviously reflected five major earthquakes (Ms 〉 7), all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically pre- sented and evaluated, especially to estimate location of earthquake.展开更多
The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable c...The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фy) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.756〈Vp/Vs≤1.809 for intermediate rocks, 1.809〈Vp/Vs≤1.944 for mafic rocks, and Vp/V2〉1.944 fluidfilled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation).展开更多
In this paper, according to the data on the middle and strong earthquakes in China, we have preliminary studied the relation between the characteristic of space-time evolution of the seismic apparent strain field and ...In this paper, according to the data on the middle and strong earthquakes in China, we have preliminary studied the relation between the characteristic of space-time evolution of the seismic apparent strain field and the regions of 31 macroseism events since 1955. The result shows that, there is a rather well correlation between the anomaly region of seismic apparent strain and the zone of macroseism event occurrence within the time range of one to about five years. The R value of the application of the abnormal region of seismic apparent strain to predicting the area of strong earthquake occurrence is 0.458, and the empirical possibility of forecasting the region of macroseism occurrence is 0.625, and so the forecasting effect is comparatively well. Finally, the main results obtained above are discussed preliminarily.展开更多
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution o...In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.展开更多
This paper briefly reviewed the research progresses of earthquake prediction and/or forecasting in China during 1999~2002, especially focused on mid-short term prediction methods with approaches of seismicity, crustal...This paper briefly reviewed the research progresses of earthquake prediction and/or forecasting in China during 1999~2002, especially focused on mid-short term prediction methods with approaches of seismicity, crustal deformation, electromagnetism, ground water and the analysis by synthesis, and the application of the methods to the practice of earthquake prediction.展开更多
In this paper, the relation that the curves of nonlinear parameter H and its difference Δ H bear with strong earthquakes in North China has been studied. First, the RSH algorithm has been applied to the North ...In this paper, the relation that the curves of nonlinear parameter H and its difference Δ H bear with strong earthquakes in North China has been studied. First, the RSH algorithm has been applied to the North China region; the schemes of six quantitative prediction indexes have been studied in detail and then tested by tracing back predictions. The result shows that all the six prediction schemes are of certain prediction efficiency and have passed the test. Among the six schemes, A and E are of the best effect, with correlation coefficients R of 0.47 and 0.48 respectively. We recommend these two schemes for practical use in prediction in the future. Furthermore, the relation between the curve of Δ H (the difference of H) and strong earthquake has been studied. Based on the above results, the RSΔH algorithm that uses the Δ H value to predict strong earthquake has been put forward and applied to predict strong earthquakes in North China. The correlation coefficient R of tracing back prediction by this method is 0.45; this means that this method is also of better prediction efficiency. A combined application of these two algorithms has also been proposed. By the combined method, the time length spanned by false predictions can be shortened and thus the R value can be raised.展开更多
The procedure through which the occurrence time of an impending major earthquake can be determined is reviewed in the light of the recent advances. This can be achieved by analyzing in natural time the seismicity in t...The procedure through which the occurrence time of an impending major earthquake can be determined is reviewed in the light of the recent advances. This can be achieved by analyzing in natural time the seismicity in the candidate area. To apply this general procedure, we need two important elements: first, to know when we should start the analysis, i.e., set the natural time equal to zero. This is the time at which the system enters the critical stage. Second a reliable estimation of the candidate epicentral area. If geoelectrical measurements are taken and the VAN method (after the initials of the three researchers Varotsos, Alexopoulos and Nomicos)is applied, both these elements become available upon the recording of a precursory Seismic Electric Signals (SES) activity, because its initiation marks the time when the system enters the critical stage, and in addition the SES data enable the determination of the epicentral area of the impending mainshock. On the other hand, if geoelectrical data are lacking, we make use of the following two recent findings by means of natural time analysis: First, the fluctuations of the order parameter of seismicity in a large area exhibit a minimum a few months before a major earthquake almost simultaneously with the initiation of an SES activity. Second, a spatiotemporal study of this minimum unveils an estimate of the epicentral area of the impending major earthquake. Two examples are given that refer to the strongest earthquakes that occurred in Greece and Japan during the last 3 decades, i.e., the Mw6.9 earthquake in southwestern Greece on 14 February 2008 and the Mw9.0 Tohoku earthquake in Japan on 11 March 2011.展开更多
We have analyzed the correlation of the annual key regions with a certain seismic risk and the earthquakes in China from 1990-1997 by the statistical simulation analysis method. The statistical simulation analysis met...We have analyzed the correlation of the annual key regions with a certain seismic risk and the earthquakes in China from 1990-1997 by the statistical simulation analysis method. The statistical simulation analysis method is effective to deal with space-time heterogeneity of earthquakes and risk regions, the values of simulating random prediction probability have been got after 105 count, the objective results have been got by comparing average probability between the simulating prediction and the practical prediction. The results show: (1) average probability of the practical prediction for the annual seismic key risk regions in China from 1990-1997 is higher than that of the simulating prediction by 0.037 19 using the method of pure random simulating risk regions; (2) average probability of the practical prediction is higher than that of the simulation prediction by 0.021 83 using the method of simulating risk regions with the different probability based on the earthquake activity; (3) average probability of the practical prediction is much higher than that of the simulating prediction by 0.209 62 in West Xinjiang region using the method of dividing the Chinese Continent into the three regions: West Xinjiang region, Southwest region of China and the other region.展开更多
The scientific idea of earthquake prediction in China is introduced in this paper. The various problems on evaluation of earthquake prediction ability are analyzed. The practical effect of prediction on annual seismic...The scientific idea of earthquake prediction in China is introduced in this paper. The various problems on evaluation of earthquake prediction ability are analyzed. The practical effect of prediction on annual seismic risk areas in 1990~2000 in China is discussed based on R-value evaluation method, and the ability of present earthquake prediction in China is reviewed.展开更多
基金jointly sponsored by the Youth Fund Progamm of the National Natural Science Foundation of China ( 40804010 )the Central-level Basic Science Programm of Institute of Geophysics,CEA (DQJB10B23)
文摘To determine the studying region of China Testing Center of the Collaboratory for the Study of Earthquake Predictability (CSEP), we adopted the Entire-Magnitude-Range (EMR) method to study the spatial distribution of minimum magnitude of completeness (Mc) in the North-South Trending Seismic Belt (NSTSB) during the period from October 1, 2008 to May 31, 2011. Also bootstrap testing was performed to estimate the uncertainty of Mc, i. e. 8Mc. The results show that Mc (EMR) = 1.6 ± 0. 03 for the whole region. From the spatial distributions of Mc we find that Mc is in the range of Mu 1.3 ±2.0 for most regions. Specifically, the spatial distribution of Mc is consistent with the distribution of stations indicating high monitoring level in the southern part and low monitoring level in the northern part. Events located with less than three stations have great influence on Me. Moreover, the uncertainty of minimum magnitude of completeness 6Mc ranges from 0. 07 to 0.22. The spatial distribution of 6Mc agrees with the seismic rate. The shorter time span may cause larger 6Mc
文摘Earthquakes and the tsunamis they produce are the world’s most devastating natural disasters, affecting more than 100 countries. Not surprisingly, the problem of earthquake prediction has occupied scientists’ minds for more than two thousand years. This paper provides theoretical and practical arguments regarding the possibility of predicting strong and major earthquakes worldwide. Many strong and major earthquakes can be predicted at least two to five months in advance, based on identifying stressed areas that begin to behave abnormally before strong events, with the size of these areas corres</span><span style="font-family:Verdana;">ponding to Dobrovolsky’s formula. We make predictions by combining</span><span style="font-family:Verdana;"> knowledge from many different disciplines: physics, geophysics, seismology, geology, and earth science, among others. An integrated approach is used to identify anomalies and make predictions, including satellite remote sensing techniques and data from ground-based instruments. Terabytes of information are currently processed every day with many different multi-parametric prediction systems applied thereto. Alerts are issued if anomalies are confirmed by a few different systems. It has been found that geophysical patterns of earthquake preparation and stress accumulation are similar for all key seismic regions. The same earthquake prediction methodologies and systems have been successfully applied in global practice since 2013, with the technology successfully used to retrospectively test against more than 700 strong and major earthquakes since 1970. In other words, the earthquake prediction problem has largely been solved. Throughout 2017-2021, results were presented to more than 160 professors from 63 countries.
文摘The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes.
基金the National Key R&D Program of China(grants 2017YFC1500501).
文摘The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault,which are adopted from relevant studies such as seismological geology,geodesy,and historical earthquake records.Based on the long-term predictions of large earthquakes throughout the world,this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap,motion strongly locked,sparse small-moderate earthquakes,and apparent Coulomb stress increase.This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland.The present loading rate of each fault is first constrained by geodetic observations;the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB41 000000)the National Natural Science Foundation of China (Grant No. 42174101, 41974023, 41874094, 41874026)。
文摘Earthquake prediction remains a challenging and difficult task for scientists all over the world.The tidal triggering of earthquakes is being proven by an increasing number of investigations,most of which have shown that earthquakes are positively correlated with tides,and thus,tides provide a potential tool for earthquake prediction,especially for imminent earthquakes.In this study,publications concerning the tidal triggering of earthquakes were compiled and analyzed with regard to global earthquakes,which were classified into three main types:tectonic,volcanic,and slow earthquakes.The results reveal a high correlation between tectonic earthquakes and tides(mainly for semidiurnal and diurnal tides;14-day tides) before and after the occurrence of significant earthquakes.For volcanic earthquakes,observations of volcanoes on the seafloor and land indicate that volcanic earthquakes in near-shore volcanic areas and mid-ocean ridges have a strong correlation with tidal forces,mostly those with semidiurnal and diurnal periods.For slow earthquakes,the periodicity of the tremor duration is highly correlated with semidiurnal and diurnal tides.In conclusion,the tidal triggering of these three types of earthquakes makes a positive contribution to earthquake preparation and understanding the triggering mechanism,and thus,the prediction of these types of earthquakes should be investigated.However,there are still several inadequacies on this topic that need to be resolved to gain a definitiveanswer regarding the tidal triggering of all earthquakes.The main inadequacies are discussed in this paper from our point of view.
文摘We statistically validate the 2011-2022 earthquake prediction records of Ada, the sixth finalist of the 2nd China AETA in 2021, who made 147 earthquake predictions (including 60% of magnitude 5.5 earthquakes) with a prediction accuracy higher than 70% and a confidence level of 95% over a 12-year period. Since the reliable earthquake precursor signals described by Ada and the characteristics of Alfvén waves match quite well, this paper proposes a hypothesis on how earthquakes are triggered based on the Alfvén (Q G) torsional wave model of Gillette et al. When the plume of the upper mantle column intrudes into the magma and lithosphere of the soft flow layer during the exchange of hot and cold molten material masses deep inside the Earth’s interior during ascent and descent, it is possible to form body and surface plasma sheets under certain conditions to form Alfven nonlinear isolated waves, and Alfven waves often perturb the geomagnetic field, releasing huge heat and kinetic energy thus triggering earthquakes. To explain the complex phenomenon of how Ada senses Alvfen waves and how to locate epicenters, we venture to speculate that special magnetosensory cells in a few human bodies can sense earthquake precursors and attempt to hypothesize an algorithm that analyzes how the human biological nervous system encodes and decodes earthquake precursors and explains how human magnetosensory cells can solve complex problems such as predicting earthquake magnitude and locating epicenters.
基金supported by the Basic Research Plan of the Institute of Earthquake Science( 02092422)
文摘The paper gives an analysis of the displacement time series before and after the March 11,2011 Ms9.0 east Japan earthquake and co-seismic displacements observed at continuous GPS stations in and around China. The results showed a broad-scaled related elastic-rebound process and some premonitory horizontal crustal movements to this earthquake over this vast area.
基金supported by National Key Technology Research and Development Program (2006BAC01B02-02-05)Basic Research Plan of the Institute of Earthquake Science,China Earthquake Administration (0207690239)
文摘The great Wenchuan earthquake of M8.0 on May 12, 2008, occurred in an area with dense GPS observation stations in the regional network of the Crustal Movement Observation Network of China (CMONOC). Non-continuous observations were carried out at the 1 000 GPS stations of the regional network in 1999, 2001, 2004 and 2007. The horizontal displacements at GPS stations in the regional network before the Wenchuan earthquake show that the main driving tectonic force of the earthquake was the northward pushing of the Indian plate, added at the same time by the pushing of plates on the east and south. In comparison to the displacements in other regions, the horizontal displacements near and around the seismic area is characterized by diverging eastward displacements, that is, the stations to the north of the epicenter moved in the ENE direction while those to the south of epicenter moved in ESE direction with smaller displacements at stations near the epicenter. The accuracy of the estimated strain results is briefly discussed. In order to obtain the anomalous information before the earthquake, the methods of both best fits by trend surface and statistics have been used in the study for finding the future epicentral area from the strain accumulations in the regional network observed from 1999 to 2007 before the Wenchuan earthquake. Besides the epicentral area of the western Kunlun mountain pass earthquake of M8.1 in 2001, the results of best fits by trend surfaces of the strain accumulations from 1999 to 2007 in the regional network show that the Wenchuan earthquake occurred at the eastern fringe of a large area with relatively large accumulations of the first shear strains and also at the northeastern fringe of a smaller area with significant accumulated areal compressions. The statistics of the accumulations of the strain components demonstrates that they also showed anomalous distribution pattems in this area and its neighborhood with increasing accumulations of both shear strains and areal compressions.
基金supported by the National 973 Program of China(2008CB425704)
文摘Studies of GPS data carried out before and after the great Wenchuan earthquake of Ms8.0 on May 12, 2008 show that anomalous crustal movements occurred before the earthquake. Data from 4 pre-earthquake observation sessions at a dense network of stations show that there were prominent broad-ranged long- and midterm anomalies in horizontal displacements and strain and in vertical displacements. Data from the fewer-numbered reference stations of continuous GPS observations since 1999 in West and South China showed short-term preseismic anomalies in horizontal displacements. The detection of co-seismic horizontal displacements at these stations supports the existence of the pre-earthquake anomalies. Results of single-epoch solutions of data from continuous-observation stations near the epicenter also show large imminent anomalies in vertical displacements. Although the Wenchuan earthquake was not predicted, these results give a strong indication that GPS should be the main observation technique for long-term, mid-term, short-term and imminent earthquake predictions.
基金A considerable part of the works was carried out in the frameworks of Frontier Projects by NASDA and RIKENNICT(National Institute of Information and Communications Technology) (R and D promotion scheme funding international joint research) for its financial support
文摘The ultra-low-frequency (ULF) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake (EQ) prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before three major EQs. Then, we present further statistical study on the ULF occurrence, our networks of ULF monitoring in different spatial scales in Japan and finally we present several signal processings to identify the seismogenic emissions by showing latest results for recent large EQs.
基金This work was supported by the National Natural Science Foundation of China (grants 40574007 and 40374013)he radar data used are partially offered by the project ENVISAT A0-711 of Europe Space Administration.
文摘By using the D-InSAR technique, we have acquired the temporal-spatial evolution images of preseismic.cosesimci-postseismic interferometric deformation fields associated with the M 7.9 earthquake of Mani, Tibet on 8 November 1997. The analysis of these images reveals the relationships between the temporal-spatial evolution features of the interferometric deformation fields and locking, rupturing, and elastic restoring of the source rupture plane, which represent the processes of strain accumulation, strain release, and postseismic restoration. The result shows that 10 months prior to the Mani event, a left-lateral shear trend appeared in the seismic area, which was in accordance with the earthquake fault in nature. The quantity of local deformation on the north wall was slightly larger than that on the south wall, and the deformation distribution area of the north wall was relatively large. With the event impending, the deformation of the south wall varied increasingly, and the deformation center shifted eastward. Two and half monthd before the event, the west side of the fault was still locked while the east side began to slide, implying that the whole fault would rupture at any moment. These features can be regarded as short-term precursors to this earthquake. Within the period from 16 April 1996 to two and half months before the earthquake, the most remarkable deformation zones appeared in the north and south walls, which were parallel to and about 40 km apart from the fault, with accumulated local displacements of 344 mm and 251 mm on the north and south walls, respectively. The south wall was the active one with larger displacements. Five months after the earthquake, the distribution feature of interferometric fringes was just opposite to that prior to the event, expressing evident right-lateral shear. The recovered displacements are -179 mm on the north wall and -79 mm on the south wall, close to the east side of the fault. However, in the area of the south wall far from the fault there still existed a trend of sinistral motion. The deformation of the north wall was small but recovered fast in a larger area, while the active south wall began to recover from the east section of the fault toward the WSW.
基金jointly funded by the Shanxi Science and Technology Plan Projects(2014K13-04)the Special Earthquake Research Project Grant offered by the China Earthquake Administration(201508009)the Crustal Movement Observation Network of China
文摘The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998-2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from China's Mainland since 2000 obviously reflected five major earthquakes (Ms 〉 7), all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically pre- sented and evaluated, especially to estimate location of earthquake.
基金funded by the Natural Sciences and Engineering Council of Canada and the Geological Survey of China
文摘The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фy) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.756〈Vp/Vs≤1.809 for intermediate rocks, 1.809〈Vp/Vs≤1.944 for mafic rocks, and Vp/V2〉1.944 fluidfilled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation).
基金The Key Project(95-04-06-03,95-04-07-02)from China Seismological Bureau.
文摘In this paper, according to the data on the middle and strong earthquakes in China, we have preliminary studied the relation between the characteristic of space-time evolution of the seismic apparent strain field and the regions of 31 macroseism events since 1955. The result shows that, there is a rather well correlation between the anomaly region of seismic apparent strain and the zone of macroseism event occurrence within the time range of one to about five years. The R value of the application of the abnormal region of seismic apparent strain to predicting the area of strong earthquake occurrence is 0.458, and the empirical possibility of forecasting the region of macroseism occurrence is 0.625, and so the forecasting effect is comparatively well. Finally, the main results obtained above are discussed preliminarily.
文摘In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.
基金State Science and Technique Key Program (2001BA601B01).
文摘This paper briefly reviewed the research progresses of earthquake prediction and/or forecasting in China during 1999~2002, especially focused on mid-short term prediction methods with approaches of seismicity, crustal deformation, electromagnetism, ground water and the analysis by synthesis, and the application of the methods to the practice of earthquake prediction.
文摘In this paper, the relation that the curves of nonlinear parameter H and its difference Δ H bear with strong earthquakes in North China has been studied. First, the RSH algorithm has been applied to the North China region; the schemes of six quantitative prediction indexes have been studied in detail and then tested by tracing back predictions. The result shows that all the six prediction schemes are of certain prediction efficiency and have passed the test. Among the six schemes, A and E are of the best effect, with correlation coefficients R of 0.47 and 0.48 respectively. We recommend these two schemes for practical use in prediction in the future. Furthermore, the relation between the curve of Δ H (the difference of H) and strong earthquake has been studied. Based on the above results, the RSΔH algorithm that uses the Δ H value to predict strong earthquake has been put forward and applied to predict strong earthquakes in North China. The correlation coefficient R of tracing back prediction by this method is 0.45; this means that this method is also of better prediction efficiency. A combined application of these two algorithms has also been proposed. By the combined method, the time length spanned by false predictions can be shortened and thus the R value can be raised.
文摘The procedure through which the occurrence time of an impending major earthquake can be determined is reviewed in the light of the recent advances. This can be achieved by analyzing in natural time the seismicity in the candidate area. To apply this general procedure, we need two important elements: first, to know when we should start the analysis, i.e., set the natural time equal to zero. This is the time at which the system enters the critical stage. Second a reliable estimation of the candidate epicentral area. If geoelectrical measurements are taken and the VAN method (after the initials of the three researchers Varotsos, Alexopoulos and Nomicos)is applied, both these elements become available upon the recording of a precursory Seismic Electric Signals (SES) activity, because its initiation marks the time when the system enters the critical stage, and in addition the SES data enable the determination of the epicentral area of the impending mainshock. On the other hand, if geoelectrical data are lacking, we make use of the following two recent findings by means of natural time analysis: First, the fluctuations of the order parameter of seismicity in a large area exhibit a minimum a few months before a major earthquake almost simultaneously with the initiation of an SES activity. Second, a spatiotemporal study of this minimum unveils an estimate of the epicentral area of the impending major earthquake. Two examples are given that refer to the strongest earthquakes that occurred in Greece and Japan during the last 3 decades, i.e., the Mw6.9 earthquake in southwestern Greece on 14 February 2008 and the Mw9.0 Tohoku earthquake in Japan on 11 March 2011.
文摘We have analyzed the correlation of the annual key regions with a certain seismic risk and the earthquakes in China from 1990-1997 by the statistical simulation analysis method. The statistical simulation analysis method is effective to deal with space-time heterogeneity of earthquakes and risk regions, the values of simulating random prediction probability have been got after 105 count, the objective results have been got by comparing average probability between the simulating prediction and the practical prediction. The results show: (1) average probability of the practical prediction for the annual seismic key risk regions in China from 1990-1997 is higher than that of the simulating prediction by 0.037 19 using the method of pure random simulating risk regions; (2) average probability of the practical prediction is higher than that of the simulation prediction by 0.021 83 using the method of simulating risk regions with the different probability based on the earthquake activity; (3) average probability of the practical prediction is much higher than that of the simulating prediction by 0.209 62 in West Xinjiang region using the method of dividing the Chinese Continent into the three regions: West Xinjiang region, Southwest region of China and the other region.
基金The Development and Planning Project of National Important Base Research (G19980407).
文摘The scientific idea of earthquake prediction in China is introduced in this paper. The various problems on evaluation of earthquake prediction ability are analyzed. The practical effect of prediction on annual seismic risk areas in 1990~2000 in China is discussed based on R-value evaluation method, and the ability of present earthquake prediction in China is reviewed.