Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman f...Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.展开更多
The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a tota...The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a total of 200 kinematic source models for the Ludian event,which are characterized by the heterogeneous slip on the conjugated ruptured fault and the slip-dependent spreading of the rupture front.The results indicated that the heterogeneous slip and the spatial extent of the ruptured fault play dominant roles in the spatial distribution of ground motions in the near-fault area.The peak ground accelerations(PGAs)and 5%-damped pseudospectral accelerations(PSAs)at periods shorter than 0.5 s estimated on the resulting synthetics generally match well with the observations at stations with Joyner-Boore distances(RJB)greater than 20 km.The synthetic PGVs and PSAs at periods of 0.5 s and 0.75 s are in good agreement with predicted medians by the Yu14 model(Yu et al.,2014).However,the synthetic results are generally much lower than the predicted medians by BSSA14 model(Boore et al.,2014).Moreover,the ground motion variability caused by the randomness in the source rupture process was evaluated by these synthetics.The standard deviations of PSAs on the base-10 logarithmic scale,Sigma[log10(PSA)],are closely dependent on either the spectral period or the RJB.The Sigma[log10(PSA)]remains a constant approximately 0.55 at periods shorter than 0.1 s,and then increase continuously up to^0.13 as the period increases from 0.1 to 2.0 s.The Sigma[log10(PSA)]values at periods of 0.1‒2.0 s show the downward tendency as the RJB values increase.However,the Sigma[log10(PSA)]values at periods shorter than 0.1 s decrease as the RJB values increase up to^50 km,and then increase with the increasing RJB.Furthermore,we found that the ground-motion variability shows the significant dependence on the azimuth.展开更多
A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, includi...A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width, rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws. Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic comer frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.展开更多
Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present ...Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.展开更多
The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morpholog...The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground mo-tion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture, and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the north-western margin of the Sichuan Basin and caused by both the directivity of fault rupture and the ampli-fication in the thick sediment basin. Rough topography above the rupture fault causes wave scattering, resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley. Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard as-sessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.展开更多
基金Project supported by the National Natural Science Foundation of China (No.50008017)
文摘Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.
基金supported by the Science Foundation of the Institute of Engineering Mechanics,China Earthquake Administration(No.2018B03)National Natural Science Foundation of China(No.51808514).
文摘The stochastic finite-fault simulation method was applied to synthesize the horizontal ground acceleration seismograms produced by the MW6.1 Ludian earthquake on August 3,2014.For this purpose,we produced first a total of 200 kinematic source models for the Ludian event,which are characterized by the heterogeneous slip on the conjugated ruptured fault and the slip-dependent spreading of the rupture front.The results indicated that the heterogeneous slip and the spatial extent of the ruptured fault play dominant roles in the spatial distribution of ground motions in the near-fault area.The peak ground accelerations(PGAs)and 5%-damped pseudospectral accelerations(PSAs)at periods shorter than 0.5 s estimated on the resulting synthetics generally match well with the observations at stations with Joyner-Boore distances(RJB)greater than 20 km.The synthetic PGVs and PSAs at periods of 0.5 s and 0.75 s are in good agreement with predicted medians by the Yu14 model(Yu et al.,2014).However,the synthetic results are generally much lower than the predicted medians by BSSA14 model(Boore et al.,2014).Moreover,the ground motion variability caused by the randomness in the source rupture process was evaluated by these synthetics.The standard deviations of PSAs on the base-10 logarithmic scale,Sigma[log10(PSA)],are closely dependent on either the spectral period or the RJB.The Sigma[log10(PSA)]remains a constant approximately 0.55 at periods shorter than 0.1 s,and then increase continuously up to^0.13 as the period increases from 0.1 to 2.0 s.The Sigma[log10(PSA)]values at periods of 0.1‒2.0 s show the downward tendency as the RJB values increase.However,the Sigma[log10(PSA)]values at periods shorter than 0.1 s decrease as the RJB values increase up to^50 km,and then increase with the increasing RJB.Furthermore,we found that the ground-motion variability shows the significant dependence on the azimuth.
基金China Postdoctoral Science Foundation UnderGrant No. 2005037650 Heilongjiang Province PostdoctoralScience Foundation China EarthquakeAdministration’s Tenth"Five Year Plans" Project
文摘A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width, rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws. Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic comer frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.
基金supported by the National Natural Science Foundation of China (No. 41774064)
文摘Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.
基金the U.S. National Science Foundation (Grant Nos. EAR 0738779 and OCE 0727919)the National Basic Research Program of China (Grant No. 2004CB418404)partially by the National Nature Science Foundation of China (Grant No. 40521002)
文摘The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground mo-tion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture, and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the north-western margin of the Sichuan Basin and caused by both the directivity of fault rupture and the ampli-fication in the thick sediment basin. Rough topography above the rupture fault causes wave scattering, resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley. Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard as-sessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.