Great earthquakes in mountain areas always trigger severe geologic hazards such as landslides, debris flows and rock falls, thereby causing tremendous property damage and casualties. On 19th June, 1781, a Ms 7.5 earth...Great earthquakes in mountain areas always trigger severe geologic hazards such as landslides, debris flows and rock falls, thereby causing tremendous property damage and casualties. On 19th June, 1781, a Ms 7.5 earthquake occurred in Tongwei of Pan'an, Gansu Province, west China,展开更多
The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mec...The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mechanism of seismic landslides (Bijan Khazai et al., 2003; Chong Xu et al., 2013; Lewis a. Owen et al., 2008; Randall W. Jibson et al., 2006). However, few researches have focused on the early identification indicators of large-giant bedrock landslides triggered by earthquake (David k. Keefer., 1984; Janusz Wasowski et al., 2011; Alexander L.Strom., 2009; Patrick Meunier et al., 2008; Shahriar Vahdani et al., 2002; Bijan Khazai et al., 2003). This paper presents the identification indicators of large-giant bedrock landslides triggered by earthquake in the Longmenshan tectonic belt on the basic of their characteristics, distribution and the relationship between seismic landslides and the peak ground motion acceleration.展开更多
The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, usi...The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.展开更多
On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036...On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036 landslides were determined from visual interpretation of aerial photographs and high resolution remote sensing images, and verified by selected field investigations. These landslides covered a total area of about 1. 194km~. Characteristics and failure mechanisms of these landslides are listed in this paper, including the fact that the spatial distribution of these landslides is controlled by co- seismic main surface fault ruptures. Most of the landslides were small scale, causing rather less hazards, and often occurring close to each other. The landslides were of various types, including mainly disrupted landslides and rock falls in shallows and also deep-seated landslides, liquefaction induced landslides, and compound landslides. In addition to strong ground shaking, which is the direct landslide triggering factor, geological, topographical, and human activity also have impact on the occurrence of earthquake triggered landslides. In this paper, five types of failure mechanisms related to the landslides are presented, namely, the excavated toes of slopes accompanied by strong ground shaking; surface water infiltration accompanied by strong ground shaking; co- seismic fault slipping accompanied by strong ground shaking; only strong ground shaking; and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by co-seismic ground shaking. Besides the main co-seismic surface ruptures, slope fissures were also delineated from visual interpretation of aerial photographs in high resolution. A total of 4814 slope fissures, with a total length up to 77. lkm, were finally mapped. These slope fissures are mainly distributed on the slopes located at the southeastern end of the main co-seismic surface rupture zone, an area subject to strong compression during the earthquake.展开更多
Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well a...Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.展开更多
At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km,...At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km, resulting in a heavy loss of both human lives and properties(10 deaths, 3 injuries, 73 missing, and 103 houses completely destroyed). The objectives of this paper are to understand the overall process and triggering factors of this landslide and to explore the affecting factors for its long term evolution before failure. Post event surveys were carried out the day after the landslide occurrence. Information was gathered from literature and on-site investigation and measurement. Topography, landforms, lithology, geological setting, earthquake history, meteorological and hydrological data of the area were analysed. Aerial photographs and other remote sensing information were used for evaluation and discussion. Eye witnesses also provided a lot of helpful information for us to understand the process of initiation, development and deposition. The depositional characteristics of the moving material as well as the traces of the movement,the structural features of the main scarp and the seismic waves induced by the slide are presented and discussed in detail in this paper. The results show that the mechanism of the landslide is a sudden rupture of the main block caused by the instability of a secondary block at a higher position. After the initiation, the failed rock mass at higher position overloaded the main block at the lower elevation and collapsed in tandem. Fragmentation of the rock mass occurred later, thus forming a debris avalanche with high mobility. This landslide case indicates that such seismic events could influence geological hazards for over 80 years and this study provides reference to the long term susceptibility and risk assessment of secondary geological hazards from earthquake.展开更多
In this study,Bayesian probability method and machine learning model are used to study the real occurrence probability of earthquake-induced landslide risk in Taiwan region.The analyses were based on the 1999 Taiwan C...In this study,Bayesian probability method and machine learning model are used to study the real occurrence probability of earthquake-induced landslide risk in Taiwan region.The analyses were based on the 1999 Taiwan Chi-Chi Earthquake,the largest earthquake in the history in this Region in a hundred years,thus can provide better control on the prediction accuracy of the model.This seismic event has detailed and complete seismic landslide inventories identified by polygons,including 9272 seismic landslide records.Taking into account the real earthquake landslide occurrence area,the difference in landslide area and the non-sliding/sliding sample ratios and other factors,a total of 13,656,000 model training samples were selected.We also considered other seismic landslide influencing factors,including elevation,slope,aspect,topographic wetness index,lithology,distance to fault,peak ground acceleration and rainfall.Bayesian probability method and machine learning model were combined to establish the multi-factor influence of earthquake landslide occurrence model.The model is then applied to the whole Taiwan region using different ground motion peak accelerations(from 0.1 g to 1.0 g with 0.1 g intervals)as a triggering factor to complete the real probability of earthquake landslide map in Taiwan under different peak ground accelerations,and the functional relationship between different Peak Ground Acceleration and their predicted area is obtained.展开更多
At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 ea...At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.展开更多
In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M^8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Ce...In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M^8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery and digital elevation models(DEMs), in combination with field survey, demonstrate that:(i) the landslides observed in the study area range from small-scale debris/rock falls to large-scale rock avalanches;(ii) the landslides are mostly developed upon steep slopes of ≥30°; and(iii) the step-like normal-fault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the Weinan area may facilitate the occurrence of large landslides. The results presented in this study would be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal faulting.展开更多
基金support of China Geological Survey(Project No.12120114035901)NSFC(Award No.41472296 and No.41372374)
文摘Great earthquakes in mountain areas always trigger severe geologic hazards such as landslides, debris flows and rock falls, thereby causing tremendous property damage and casualties. On 19th June, 1781, a Ms 7.5 earthquake occurred in Tongwei of Pan'an, Gansu Province, west China,
基金financially supported by the Geological Survey Project of China Geological Survey (grant no.1212011014032,1212011220134)
文摘The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mechanism of seismic landslides (Bijan Khazai et al., 2003; Chong Xu et al., 2013; Lewis a. Owen et al., 2008; Randall W. Jibson et al., 2006). However, few researches have focused on the early identification indicators of large-giant bedrock landslides triggered by earthquake (David k. Keefer., 1984; Janusz Wasowski et al., 2011; Alexander L.Strom., 2009; Patrick Meunier et al., 2008; Shahriar Vahdani et al., 2002; Bijan Khazai et al., 2003). This paper presents the identification indicators of large-giant bedrock landslides triggered by earthquake in the Longmenshan tectonic belt on the basic of their characteristics, distribution and the relationship between seismic landslides and the peak ground motion acceleration.
基金supported by the National Natural Science Foundation of China (Grant No. 41571004)National Program on Key Research Project of China (Grant No. 2016YFC0802206)+1 种基金Key Laboratory Foundation of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP-17-03)the Fundamental Research Funds for the Central Universities of China (Grant No. 2682016CX003)
文摘The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.
基金sponsored by the National Natural Science Foundation,China(40821160550),supported by the National Natural Science Foundation of China (41202235 )the Basic Scientific Fund of the Institute of Geology, China Earthquake Administration (IGCEA1215)
文摘On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7. 1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036 landslides were determined from visual interpretation of aerial photographs and high resolution remote sensing images, and verified by selected field investigations. These landslides covered a total area of about 1. 194km~. Characteristics and failure mechanisms of these landslides are listed in this paper, including the fact that the spatial distribution of these landslides is controlled by co- seismic main surface fault ruptures. Most of the landslides were small scale, causing rather less hazards, and often occurring close to each other. The landslides were of various types, including mainly disrupted landslides and rock falls in shallows and also deep-seated landslides, liquefaction induced landslides, and compound landslides. In addition to strong ground shaking, which is the direct landslide triggering factor, geological, topographical, and human activity also have impact on the occurrence of earthquake triggered landslides. In this paper, five types of failure mechanisms related to the landslides are presented, namely, the excavated toes of slopes accompanied by strong ground shaking; surface water infiltration accompanied by strong ground shaking; co- seismic fault slipping accompanied by strong ground shaking; only strong ground shaking; and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by co-seismic ground shaking. Besides the main co-seismic surface ruptures, slope fissures were also delineated from visual interpretation of aerial photographs in high resolution. A total of 4814 slope fissures, with a total length up to 77. lkm, were finally mapped. These slope fissures are mainly distributed on the slopes located at the southeastern end of the main co-seismic surface rupture zone, an area subject to strong compression during the earthquake.
文摘Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.
基金financially supported by the National Basic Reareach program of China (973 program, Grant No. 2013CB733201)Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-DQC006)the “Hundred Talents” program (SU Li-jun) of Chinese Academy of Sciences (CAS)
文摘At 5: 39 AM on 24 June 2017, a huge landslide-debris avalanche occurred on Fugui Mountain at Xinmo village, Diexi town, Maoxian county, Sichuan province, China. The debris blocked the Songpinggou River for about 2 km, resulting in a heavy loss of both human lives and properties(10 deaths, 3 injuries, 73 missing, and 103 houses completely destroyed). The objectives of this paper are to understand the overall process and triggering factors of this landslide and to explore the affecting factors for its long term evolution before failure. Post event surveys were carried out the day after the landslide occurrence. Information was gathered from literature and on-site investigation and measurement. Topography, landforms, lithology, geological setting, earthquake history, meteorological and hydrological data of the area were analysed. Aerial photographs and other remote sensing information were used for evaluation and discussion. Eye witnesses also provided a lot of helpful information for us to understand the process of initiation, development and deposition. The depositional characteristics of the moving material as well as the traces of the movement,the structural features of the main scarp and the seismic waves induced by the slide are presented and discussed in detail in this paper. The results show that the mechanism of the landslide is a sudden rupture of the main block caused by the instability of a secondary block at a higher position. After the initiation, the failed rock mass at higher position overloaded the main block at the lower elevation and collapsed in tandem. Fragmentation of the rock mass occurred later, thus forming a debris avalanche with high mobility. This landslide case indicates that such seismic events could influence geological hazards for over 80 years and this study provides reference to the long term susceptibility and risk assessment of secondary geological hazards from earthquake.
基金supported by the National Key Research and Development Program of China(2018YFC1504703)。
文摘In this study,Bayesian probability method and machine learning model are used to study the real occurrence probability of earthquake-induced landslide risk in Taiwan region.The analyses were based on the 1999 Taiwan Chi-Chi Earthquake,the largest earthquake in the history in this Region in a hundred years,thus can provide better control on the prediction accuracy of the model.This seismic event has detailed and complete seismic landslide inventories identified by polygons,including 9272 seismic landslide records.Taking into account the real earthquake landslide occurrence area,the difference in landslide area and the non-sliding/sliding sample ratios and other factors,a total of 13,656,000 model training samples were selected.We also considered other seismic landslide influencing factors,including elevation,slope,aspect,topographic wetness index,lithology,distance to fault,peak ground acceleration and rainfall.Bayesian probability method and machine learning model were combined to establish the multi-factor influence of earthquake landslide occurrence model.The model is then applied to the whole Taiwan region using different ground motion peak accelerations(from 0.1 g to 1.0 g with 0.1 g intervals)as a triggering factor to complete the real probability of earthquake landslide map in Taiwan under different peak ground accelerations,and the functional relationship between different Peak Ground Acceleration and their predicted area is obtained.
基金supported by the National Natural Science Foundation of China(42177184)the Balance Research Funds of the Chinese Academy of Geological Sciences(60)the China Geological Survey(DD20221816)。
文摘At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.
基金supported by the National Natural Science Foundation of China (No. 41502203)the Scientific Research Foundation for Returned Overseas Scholars of China (awarded to G. Rao)+1 种基金the Natural Science Foundation of Zhejiang Province (No. LY15D02001)a Science Project (No. 23253002)from the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M^8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery and digital elevation models(DEMs), in combination with field survey, demonstrate that:(i) the landslides observed in the study area range from small-scale debris/rock falls to large-scale rock avalanches;(ii) the landslides are mostly developed upon steep slopes of ≥30°; and(iii) the step-like normal-fault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the Weinan area may facilitate the occurrence of large landslides. The results presented in this study would be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal faulting.