Catastrophic natural hazards,such as earthquake,pose serious threats to properties and human lives in urban areas.Therefore,earthquake risk assessment(ERA)is indispensable in disaster management.ERA is an integration ...Catastrophic natural hazards,such as earthquake,pose serious threats to properties and human lives in urban areas.Therefore,earthquake risk assessment(ERA)is indispensable in disaster management.ERA is an integration of the extent of probability and vulnerability of assets.This study develops an integrated model by using the artificial neural network–analytic hierarchy process(ANN–AHP)model for constructing the ERA map.The aim of the study is to quantify urban population risk that may be caused by impending earthquakes.The model is applied to the city of Banda Aceh in Indonesia,a seismically active zone of Aceh province frequently affected by devastating earthquakes.ANN is used for probability mapping,whereas AHP is used to assess urban vulnerability after the hazard map is created with the aid of earthquake intensity variation thematic layering.The risk map is subsequently created by combining the probability,hazard,and vulnerability maps.Then,the risk levels of various zones are obtained.The validation process reveals that the proposed model can map the earthquake probability based on historical events with an accuracy of 84%.Furthermore,results show that the central and southeastern regions of the city have moderate to very high risk classifications,whereas the other parts of the city fall under low to very low earthquake risk classifications.The findings of this research are useful for government agencies and decision makers,particularly in estimating risk dimensions in urban areas and for the future studies to project the preparedness strategies for Banda Aceh.展开更多
This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valle...This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valley National Park in Sichuan, China. The highways are severely threatened by rockfalls or landslide events after the 2017 Ms 7.0 Jiuzhaigou earthquake. Field survey(September 14-18 th, 2017, May 15-20 th, 2018, and September 9-17 th, 2018), unmanned aerial vehicle(UAV), and satellite image identified high-relief rockfalls and road construction rockfalls or landslides along the highway. Rockfall hazard is qualitatively evaluated using block count, velocity, and flying height through a 3D rockfall simulation at local and regional scales. Rockfall risk is quantitatively assessed with rockfall event probability, propagation probability, spatial probability, and vulnerability for different block volume classes. Approximately 21.5%, 20.5%, and 5.3% of the road mileage was found to be subject to an unacceptable(UA) risk class for vehicles along S301, Z120, and Z128 highways, respectively. Approximately 20.1% and 3.3% of the road mileage belong to the UA risk class for tourists along Z120 and Z128 highways, respectively. Results highlighted that high-relief rockfall events were intensively located at K50 to K55(Guanmenzi to Ganheba) and K70 to K72(Jiudaoguai to Shangsizhai Village) road mileages along S301 highway and KZ18 to KZ22(Five Flower Lake to Arrow Bamboo Lake) road mileages, KZ30(Swan Lake to Virgin Forests), and KY10.5 kilometers in Jiuzhai Valley. Rockfalls in these locations were classified under the UA risk class and medium to very high hazard index. Road construction rockfalls were located at K67(Jiuzhai Paradise) and K75–K76 kilometers along S301 highway and KZ12 to KZ14(Rhino Lake to Nuorilang Waterfall), KZ16.5 to KZ17.5(Golden Bell Lake), KY5(Lower Seasonal Lake), and KY14(Upper Seasonal Lake) kilometers along Z120 and Z128 highway in Jiuzhai Valley. Rockfalls in these areas were within a reasonable practicable risk to UA risk class and very low to medium hazard index. Finally, defensive measures, including flexible nets, concrete walls, and artificial tunnels, could be selected appropriately on the basis of the rockfall hazard index and risk class. This study revealed the integration between qualitative rockfall hazard assessment and quantitative rockfall risk assessment, which is crucial in studying rockfall prevention and mitigation.展开更多
Since the Wenchuan earthquake in China on May 12th, 2008, highways in earthquake-affected areas have been frequently interrupted by debris flows. We analyzed the hazard effect modes and damage processes along highways...Since the Wenchuan earthquake in China on May 12th, 2008, highways in earthquake-affected areas have been frequently interrupted by debris flows. We analyzed the hazard effect modes and damage processes along highways and developed three key indexes, scale of debris flows, deposits on highways and river blockage, to describe quantitatively the highway disasters. By combining the empirical methods and the actual terrain conditions, we proposed new methods to determine the value of hazard indexes. In addition, we used the economic value and resistance of highway as vulnerability assessment indexes, then determined the specific subindexes for the subgrade, bridges and culverts, and developed a way for the quantified vulnerability zoning. Moreover, we proposed the assessment and mapping methods for highway risk. The risk is described into 5 grades: extremely low risk, low risk, middle risk, high risk and extremely high risk. We applied these methods in a case study carried out on provincial highway S3o3 from Yingxiu Town to Wolong Town, in Wenchuan County. Analysis of debris flow risk for the whole highway, showed that the total length of highway in extremely low risk area was 28.26 km, 4.83 km in low risk area, 8.0 km in middle risk area, 3.65 km in high risk area, and 3.06 km in extremely high risk area. The assessment results are consistent with the field survey data which reflected the disaster situation. This risk method can be used objectively to evaluate the debris-flow risk along highways, and is useful for highway reconstruction in mountainous areas suffering from active debris flows.展开更多
The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associ- ated risk for rational formulation of contingency plans and mitigation strategies.In urban centers,the se...The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associ- ated risk for rational formulation of contingency plans and mitigation strategies.In urban centers,the seismic risk is best quantified and portrayed through the preparation of'Earthquake Damage and Loss Scenarios.'The components of such scenarios are the assessment of the hazard,inventories and the vulnerabilities of elements at risk.For the development of the earthquake risk scenario in Istanbul,two independent approaches,one based on intensities and the second on spectral displacements,are utilized.This paper will present the important features of a comprehensive study,highlight the method- ology,discuss the results and provide insights to future developments.展开更多
This paper deals with the formative process of the Wenchuan earthquake disaster chain risk. Selected earthquake-landslides chain risk is critically evaluated by the probability of landslide displacement failure based ...This paper deals with the formative process of the Wenchuan earthquake disaster chain risk. Selected earthquake-landslides chain risk is critically evaluated by the probability of landslide displacement failure based on the Newmark's permanent-deformation model. In this context, a conceptual model of regional disaster chain risk assessment was proposed, in which the hazardformative environments sensitivity was the core factor as well as the main difference compared with single disaster risk assessment. The disaster chain risk is accumulation of primary disaster risk and the secondary disasters risks. Results derived from the Wenchuan case proved that the conceptual model was suitable for the disaster chain risk assessment, especially the sudden disaster chain. This experience would offer greater potential in application of conceptual model of disaster chain risk assessment, in the process of large-scale disaster risk governance.展开更多
The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for ...The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.展开更多
Earthquake prediction is currently the most crucial task required for the probability,hazard,risk mapping,and mitigation purposes.Earthquake prediction attracts the researchers'attention from both academia and ind...Earthquake prediction is currently the most crucial task required for the probability,hazard,risk mapping,and mitigation purposes.Earthquake prediction attracts the researchers'attention from both academia and industries.Traditionally,the risk assessment approaches have used various traditional and machine learning models.However,deep learning techniques have been rarely tested for earthquake probability mapping.Therefore,this study develops a convolutional neural network(CNN)model for earthquake probability assessment in NE India.Then conducts vulnerability using analytical hierarchy process(AHP),Venn's intersection theory for hazard,and integrated model for risk mapping.A prediction of classification task was performed in which the model predicts magnitudes more than 4 Mw that considers nine indicators.Prediction classification results and intensity variation were then used for probability and hazard mapping,respectively.Finally,earthquake risk map was produced by multiplying hazard,vulnerability,and coping capacity.The vulnerability was prepared by using six vulnerable factors,and the coping capacity was estimated by using the number of hospitals and associated variables,including budget available for disaster management.The CNN model for a probability distribution is a robust technique that provides good accuracy.Results show that CNN is superior to the other algorithms,which completed the classification prediction task with an accuracy of 0.94,precision of 0.98,recall of 0.85,and F1 score of 0.91.These indicators were used for probability mapping,and the total area of hazard(21,412.94 km^(2)),vulnerability(480.98 km^(2)),and risk(34,586.10 km^(2))was estimated.展开更多
We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclu...We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclusion,erroneous claims and predictions.As a matter of fact,nowadays,Science can disclose Natural Hazards,assess Risks,and deliver the state-of-the-art Knowledge of looming disaster in advance catastrophes along with useful Recommendations on the level of risks for decision making regarding engineering design,insurance,and emergency management.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
The proposed hydroelectric project on the Yangtze Gorges will be one of the largest power stations in the world.The problem of induced seismicity to the project has attracted much attention throughout China and the wo...The proposed hydroelectric project on the Yangtze Gorges will be one of the largest power stations in the world.The problem of induced seismicity to the project has attracted much attention throughout China and the world.A research program has been carried out by the State Seismological Bureau of China.Based on the size of the reservoir and the lithology,geological structure,permeability,stress state,and previous seismicity in the region,the potential risk of reservoir-induced seismicity has been estimated.The results suggest that,after impoundment in the reservoir area,the possibility of induced seismicity cannot be completely ruled out.The areas with potential risk may be in some gorges composed of karstified carbonate and plutonic granite around the dam site.However,the magnitude is expected to be limited owing to the small dimension of the induced seismogenic faults.展开更多
On the basis of study results of deep sounding in the Yanqing Huailai basin, the shallow active tectonics, palaeoseismic events, seismic activity, distribution of crustal stress field and other related data are combi...On the basis of study results of deep sounding in the Yanqing Huailai basin, the shallow active tectonics, palaeoseismic events, seismic activity, distribution of crustal stress field and other related data are combined to study the earthquake risk of the basin comprehensively. Meanwhile, the comparison of deep structures between the basin and some other earthquake regions such as the Xingtai area is made. It is thought that there is the background of deep structures for occurrence of moderate and strong earthquakes in the Yanqing Huailai basin and its periphery, and the possibility for an M =7 earthquake to occur there cannot be excluded.展开更多
The earthquake is considered one of the most devastating disasters in any area of the world due to its potentially destructive force.Based on the various earthquake-related parameters,the risk assessment is enabled in...The earthquake is considered one of the most devastating disasters in any area of the world due to its potentially destructive force.Based on the various earthquake-related parameters,the risk assessment is enabled in advance to prevent future earthquake disasters.In this paper,for providing the shelter space demands to reduce the damage level and prevention costs,an earthquake risk assessment approach is proposed for deriving the risk index based on multiple spatial parameters in the gridded map.The proposed assessment approach is comprised of pre-processing,methodologymodel,and data visualization.The risk index model derives the earthquake risk index by multiple spatial parameters including indexes of earthquake,danger,shelter,and building for blocks in the quantitative gridded map.The parameters are provided based onmathematicalmodels and combinedwith the risk index that presents the earthquake risk assessment result for each block.Therefore,the gridding approach is proposed to provide the elements of the risk assessment area that are used in the spatial parameters.The gridded map is developed for the selected area to visualize risk index parameters associated with each risk zone.Based on the derived result of the proposed earthquake risk indexmodel,emergency shelter requirements are provided according to the risk index for each location,which supports safety measures in advance to prevent future earthquake disasters.展开更多
Wind energy is a clean and sustainable energy, and wind power does not rely on fossil fuels. So there is no fuel price risk, and it, of course, does not include the environmental costs, such as carbon emissions. Becau...Wind energy is a clean and sustainable energy, and wind power does not rely on fossil fuels. So there is no fuel price risk, and it, of course, does not include the environmental costs, such as carbon emissions. Because of these unique advantages, wind power has gradually become an important part of the strategy of sustainable development in China. Now with the growing voices on global greenhouse gas emission reduction, and as a clean and efficient energy, wind power has huge potential in combating climate change, energy security pressures and the needs for energy. Wind power in China began to develop from the 1980s. In the first 20 years, the speed of development was slow; but since 2004, it has had an extremely rapid growth.This paper, in order to study the development mechanism of China's wind power industry, investigated and analyzed the status quo of wind power industry in China, and then found that (1) the development trend of wind power industry in China appears exponential growth; (2) China's installed capacity of wind power is still smaller than that os some other countries; (3) new subsidy policies bring developing opportunities to wind power industry in China; (4) the sectors of wind power industry are in unbalanced growing; (5) the owners of proposed wind farms are too optimistic though the built wind farm had many problems. In addition, by using the methodology of Game Theory, this paper has also constructed the matrix of pre-assessing risks of China's wind power industry to further discuss the potential risk factors within China's wind power industry as risk factors of wind farm construction, risk factors of production of wind turbines, risk factors of parts and components manufacturing industry under risk indicators like R&D, patents, the domestic policy, the international policy, the quality of products and the market regulation, in order to provide a scientific assessment and self-assessment tool for investors or implementers, and also to promote the further development of the wind power industry.展开更多
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes....In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.展开更多
One day,can we foresee earthquakes? This question always comes back from every telluric disaster,and the seismology is well annoyed to answer it.The destructtion of the city of Kobe in Japan,on January 17th 1995,arous...One day,can we foresee earthquakes? This question always comes back from every telluric disaster,and the seismology is well annoyed to answer it.The destructtion of the city of Kobe in Japan,on January 17th 1995,aroused deep debates upon the research policy on earthquakes.This disaster obviously shows our well limited capacity to take up the challenge of the prediction of earthquakes because,finally,it is indeed in Japan where authorities invest most in展开更多
A theoretical model considering the relationship between fault characteristics and tectonic stress is proposed to quantify earthquake risk degree. The model is applied in practice to the fault along the southern margi...A theoretical model considering the relationship between fault characteristics and tectonic stress is proposed to quantify earthquake risk degree. The model is applied in practice to the fault along the southern margin of Weihe basin in Shaanxi Province, Northwestern China and fitted well with reality.展开更多
Based on previous research results,present-day crustal deformation and gravity fields in the Chinese mainland are analyzed using the GPS data,leveling,gravity and cross-fault deformations. We analyzed strain accumulat...Based on previous research results,present-day crustal deformation and gravity fields in the Chinese mainland are analyzed using the GPS data,leveling,gravity and cross-fault deformations. We analyzed strain accumulation of the major faults,and identified locked or high strain accumulation segments. Combining the effects of large earthquakes in the study area,the long-term (decade) probability of large earthquakes in the Chinese mainland is estimated.展开更多
The article has been retracted due to the investigation of complaints received against it. The paper is withdrawn due to paper duplication which has been published by the author years before. This paper published in V...The article has been retracted due to the investigation of complaints received against it. The paper is withdrawn due to paper duplication which has been published by the author years before. This paper published in Vol.1 No.1 1-12 (pages), 2012, has been removed from this site.展开更多
Based on the site historical earthquake data,a method of seismic risk analysis is presented.Once the frequency of earthquake response intensity and the relative value showed a logarithmic linear,the maximum similarity...Based on the site historical earthquake data,a method of seismic risk analysis is presented.Once the frequency of earthquake response intensity and the relative value showed a logarithmic linear,the maximum similarity method would be used to obtain β,λ,and Imax,and also achieve the results of risk analysis on each site.At the same time,the "logic tree" method can be used to calibrate the uncertainty of the risk on each site.Then the final results of risk analysis indicate that this method is feasible,particularly for the sites showing intensity anomaly.展开更多
Individual beliefs, knowledge, and perception play a vital role in understanding and coping with the consequences of earthquakes. These perceptions then mold the broader perceptions of risk and danger held by communit...Individual beliefs, knowledge, and perception play a vital role in understanding and coping with the consequences of earthquakes. These perceptions then mold the broader perceptions of risk and danger held by communities, which ultimately create public policy. This survey study was designed and conducted to assess the perceptions of seismic hazard and risk of earthquake survivors and residents in Al-Marj, Libya—a city razed in a 1963 tremor. In 2019, 364 earthquake survivors and residents were surveyed for their knowledge and perception of earthquakes. Surveys were conducted in Arabic and included demographic and narrative questions in addition to Likert-scaled responses. A number of predictable, surprising, and valuable correlations were found. It was found that during earthquakes most respondents prayed to Allah, or did nothing, in comparison to escape, seeking shelter, or running for help. The majority believed their neighborhoods were unsafe while questions illiciting some aspect of quake recurrence caused a complete refusal to answer;they commented “I do not know” or “only God knows”. Most respondents did not consider preparation to be important, but younger respondents were relatively more prepared. Surprisingly, highly educated respondents were less prepared, however, they also attributed earthquakes to tectonic slipping and not divine retaliation or retribution. However, less-educated respondents stated “I do not know”, “Allah punishes”, or “Allah tests the believers”. Most participants considered themselves well-informed about earthquakes from popular media sources (internet, TV, magazines). These findings were vital in gaining an insight into hazard perception and high-risk behavior in a seismically active region like Libya. When natural hazard recurrence (<em>i.e.</em> earthquakes) are better understood, then the potential consequences of injury, damages, and deaths may be assessed, and an overall plan to produce sustainable disaster management strategies and decrease risk can be created and implemented.展开更多
基金funded by Centre for Advanced Modelling and Geospatial Information Systems, University of Technology Sydney: 323930, 321740.2232335 and 321740.2232357
文摘Catastrophic natural hazards,such as earthquake,pose serious threats to properties and human lives in urban areas.Therefore,earthquake risk assessment(ERA)is indispensable in disaster management.ERA is an integration of the extent of probability and vulnerability of assets.This study develops an integrated model by using the artificial neural network–analytic hierarchy process(ANN–AHP)model for constructing the ERA map.The aim of the study is to quantify urban population risk that may be caused by impending earthquakes.The model is applied to the city of Banda Aceh in Indonesia,a seismically active zone of Aceh province frequently affected by devastating earthquakes.ANN is used for probability mapping,whereas AHP is used to assess urban vulnerability after the hazard map is created with the aid of earthquake intensity variation thematic layering.The risk map is subsequently created by combining the probability,hazard,and vulnerability maps.Then,the risk levels of various zones are obtained.The validation process reveals that the proposed model can map the earthquake probability based on historical events with an accuracy of 84%.Furthermore,results show that the central and southeastern regions of the city have moderate to very high risk classifications,whereas the other parts of the city fall under low to very low earthquake risk classifications.The findings of this research are useful for government agencies and decision makers,particularly in estimating risk dimensions in urban areas and for the future studies to project the preparedness strategies for Banda Aceh.
基金supported by research funds awarded by the Key Research & Development Program of Sichuan Province (No. 2017SZYZF0008, No. 2019YFS0489)
文摘This work addresses the integrated assessment of rockfall(including landslides) hazards and risk for S301, Z120, and Z128 highways, which are important transportation corridors to the world heritage site Jiuzhai Valley National Park in Sichuan, China. The highways are severely threatened by rockfalls or landslide events after the 2017 Ms 7.0 Jiuzhaigou earthquake. Field survey(September 14-18 th, 2017, May 15-20 th, 2018, and September 9-17 th, 2018), unmanned aerial vehicle(UAV), and satellite image identified high-relief rockfalls and road construction rockfalls or landslides along the highway. Rockfall hazard is qualitatively evaluated using block count, velocity, and flying height through a 3D rockfall simulation at local and regional scales. Rockfall risk is quantitatively assessed with rockfall event probability, propagation probability, spatial probability, and vulnerability for different block volume classes. Approximately 21.5%, 20.5%, and 5.3% of the road mileage was found to be subject to an unacceptable(UA) risk class for vehicles along S301, Z120, and Z128 highways, respectively. Approximately 20.1% and 3.3% of the road mileage belong to the UA risk class for tourists along Z120 and Z128 highways, respectively. Results highlighted that high-relief rockfall events were intensively located at K50 to K55(Guanmenzi to Ganheba) and K70 to K72(Jiudaoguai to Shangsizhai Village) road mileages along S301 highway and KZ18 to KZ22(Five Flower Lake to Arrow Bamboo Lake) road mileages, KZ30(Swan Lake to Virgin Forests), and KY10.5 kilometers in Jiuzhai Valley. Rockfalls in these locations were classified under the UA risk class and medium to very high hazard index. Road construction rockfalls were located at K67(Jiuzhai Paradise) and K75–K76 kilometers along S301 highway and KZ12 to KZ14(Rhino Lake to Nuorilang Waterfall), KZ16.5 to KZ17.5(Golden Bell Lake), KY5(Lower Seasonal Lake), and KY14(Upper Seasonal Lake) kilometers along Z120 and Z128 highway in Jiuzhai Valley. Rockfalls in these areas were within a reasonable practicable risk to UA risk class and very low to medium hazard index. Finally, defensive measures, including flexible nets, concrete walls, and artificial tunnels, could be selected appropriately on the basis of the rockfall hazard index and risk class. This study revealed the integration between qualitative rockfall hazard assessment and quantitative rockfall risk assessment, which is crucial in studying rockfall prevention and mitigation.
基金supported by the National Natural Science Foundation of China (NSFC)(Grant No.41030742)the projects of National Basic Research Program of China (973 Program)(Grant No.2011CB409902)
文摘Since the Wenchuan earthquake in China on May 12th, 2008, highways in earthquake-affected areas have been frequently interrupted by debris flows. We analyzed the hazard effect modes and damage processes along highways and developed three key indexes, scale of debris flows, deposits on highways and river blockage, to describe quantitatively the highway disasters. By combining the empirical methods and the actual terrain conditions, we proposed new methods to determine the value of hazard indexes. In addition, we used the economic value and resistance of highway as vulnerability assessment indexes, then determined the specific subindexes for the subgrade, bridges and culverts, and developed a way for the quantified vulnerability zoning. Moreover, we proposed the assessment and mapping methods for highway risk. The risk is described into 5 grades: extremely low risk, low risk, middle risk, high risk and extremely high risk. We applied these methods in a case study carried out on provincial highway S3o3 from Yingxiu Town to Wolong Town, in Wenchuan County. Analysis of debris flow risk for the whole highway, showed that the total length of highway in extremely low risk area was 28.26 km, 4.83 km in low risk area, 8.0 km in middle risk area, 3.65 km in high risk area, and 3.06 km in extremely high risk area. The assessment results are consistent with the field survey data which reflected the disaster situation. This risk method can be used objectively to evaluate the debris-flow risk along highways, and is useful for highway reconstruction in mountainous areas suffering from active debris flows.
文摘The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associ- ated risk for rational formulation of contingency plans and mitigation strategies.In urban centers,the seismic risk is best quantified and portrayed through the preparation of'Earthquake Damage and Loss Scenarios.'The components of such scenarios are the assessment of the hazard,inventories and the vulnerabilities of elements at risk.For the development of the earthquake risk scenario in Istanbul,two independent approaches,one based on intensities and the second on spectral displacements,are utilized.This paper will present the important features of a comprehensive study,highlight the method- ology,discuss the results and provide insights to future developments.
基金supported by the National Science Foundation of China (No. 41201553)the National Basic Research Program of China (No. 2013BAK05B02)
文摘This paper deals with the formative process of the Wenchuan earthquake disaster chain risk. Selected earthquake-landslides chain risk is critically evaluated by the probability of landslide displacement failure based on the Newmark's permanent-deformation model. In this context, a conceptual model of regional disaster chain risk assessment was proposed, in which the hazardformative environments sensitivity was the core factor as well as the main difference compared with single disaster risk assessment. The disaster chain risk is accumulation of primary disaster risk and the secondary disasters risks. Results derived from the Wenchuan case proved that the conceptual model was suitable for the disaster chain risk assessment, especially the sudden disaster chain. This experience would offer greater potential in application of conceptual model of disaster chain risk assessment, in the process of large-scale disaster risk governance.
基金supported by the National Natural Science Foundation of China(Grant No,41171332)the National Science & Technology Pillar Program of China(Grant No.2008BAK50B01-5,2008BAK50B01-6 and O8H80210AR)
文摘The Yushu Ms 7.1 earthquake occurred on April 14,2010 in Qinghai Province,China.It induced a mass of secondary geological disasters,such as collapses,landslides,and debris flows.Risk assessment maps are important for geological disaster prevention and mitigation,and also can serve as a guide for post-earthquake reconstruction.Firstly,a hazard assessment index system of secondary geological disasters in the earthquake region was built in this paper,which was based on detailed analysis of environmental and triggering factors closely related to geological disasters in the study area.GIS technology was utilized to extract and analyze the assessment index.Hazard assessment maps of secondary geological disasters were obtained by spatial modeling and overlaying analysis.Secondly,an analysis of the vulnerability of hazard bearing bodies in the area was conducted,important information,such as, population density,percentage of arable land, industrial and agricultural outputs per unit area were regarded as assessment indices to evaluate socioeconomic vulnerability.Thirdly,the risk level of secondary geological disasters of the area was obtained by the formula:Risk=Hazard×Vulnerability. Risk assessment maps were categorized into four levels,including"low","moderate","high"and"very high".These results show that some urban areas are at very high risk,including Jiegu,Chengwen,Xiaxiula and Sahuteng towns.This research can provide some references and suggestions to improve decisionmaking support for emergency relief and post- earthquake reconstruction in the study area.
基金fully funded by the Center for Advanced Modeling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and IT,University of Technology Sydneysupported by Researchers Supporting Project number RSP-2020/14,King Saud University,Riyadh,Saudi Arabia。
文摘Earthquake prediction is currently the most crucial task required for the probability,hazard,risk mapping,and mitigation purposes.Earthquake prediction attracts the researchers'attention from both academia and industries.Traditionally,the risk assessment approaches have used various traditional and machine learning models.However,deep learning techniques have been rarely tested for earthquake probability mapping.Therefore,this study develops a convolutional neural network(CNN)model for earthquake probability assessment in NE India.Then conducts vulnerability using analytical hierarchy process(AHP),Venn's intersection theory for hazard,and integrated model for risk mapping.A prediction of classification task was performed in which the model predicts magnitudes more than 4 Mw that considers nine indicators.Prediction classification results and intensity variation were then used for probability and hazard mapping,respectively.Finally,earthquake risk map was produced by multiplying hazard,vulnerability,and coping capacity.The vulnerability was prepared by using six vulnerable factors,and the coping capacity was estimated by using the number of hospitals and associated variables,including budget available for disaster management.The CNN model for a probability distribution is a robust technique that provides good accuracy.Results show that CNN is superior to the other algorithms,which completed the classification prediction task with an accuracy of 0.94,precision of 0.98,recall of 0.85,and F1 score of 0.91.These indicators were used for probability mapping,and the total area of hazard(21,412.94 km^(2)),vulnerability(480.98 km^(2)),and risk(34,586.10 km^(2))was estimated.
基金supported by the Russian Science Foundationproject no.20-17-00180-P“Development of a scenario approach to the tasks of seismic hazard and risk assessment”。
文摘We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclusion,erroneous claims and predictions.As a matter of fact,nowadays,Science can disclose Natural Hazards,assess Risks,and deliver the state-of-the-art Knowledge of looming disaster in advance catastrophes along with useful Recommendations on the level of risks for decision making regarding engineering design,insurance,and emergency management.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.
文摘The proposed hydroelectric project on the Yangtze Gorges will be one of the largest power stations in the world.The problem of induced seismicity to the project has attracted much attention throughout China and the world.A research program has been carried out by the State Seismological Bureau of China.Based on the size of the reservoir and the lithology,geological structure,permeability,stress state,and previous seismicity in the region,the potential risk of reservoir-induced seismicity has been estimated.The results suggest that,after impoundment in the reservoir area,the possibility of induced seismicity cannot be completely ruled out.The areas with potential risk may be in some gorges composed of karstified carbonate and plutonic granite around the dam site.However,the magnitude is expected to be limited owing to the small dimension of the induced seismogenic faults.
文摘On the basis of study results of deep sounding in the Yanqing Huailai basin, the shallow active tectonics, palaeoseismic events, seismic activity, distribution of crustal stress field and other related data are combined to study the earthquake risk of the basin comprehensively. Meanwhile, the comparison of deep structures between the basin and some other earthquake regions such as the Xingtai area is made. It is thought that there is the background of deep structures for occurrence of moderate and strong earthquakes in the Yanqing Huailai basin and its periphery, and the possibility for an M =7 earthquake to occur there cannot be excluded.
基金This research was supported in part by the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073387)in part by the Basic Science Research Program through the NRF funded by the Ministry of Education(NRF-2019R1I1A1A01062456),Any correspondence related to this paper should be addressed to Dohyeun Kim.
文摘The earthquake is considered one of the most devastating disasters in any area of the world due to its potentially destructive force.Based on the various earthquake-related parameters,the risk assessment is enabled in advance to prevent future earthquake disasters.In this paper,for providing the shelter space demands to reduce the damage level and prevention costs,an earthquake risk assessment approach is proposed for deriving the risk index based on multiple spatial parameters in the gridded map.The proposed assessment approach is comprised of pre-processing,methodologymodel,and data visualization.The risk index model derives the earthquake risk index by multiple spatial parameters including indexes of earthquake,danger,shelter,and building for blocks in the quantitative gridded map.The parameters are provided based onmathematicalmodels and combinedwith the risk index that presents the earthquake risk assessment result for each block.Therefore,the gridding approach is proposed to provide the elements of the risk assessment area that are used in the spatial parameters.The gridded map is developed for the selected area to visualize risk index parameters associated with each risk zone.Based on the derived result of the proposed earthquake risk indexmodel,emergency shelter requirements are provided according to the risk index for each location,which supports safety measures in advance to prevent future earthquake disasters.
基金supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China in the 11th Five-Year Plan(Grant No.2007BAC03A12)
文摘Wind energy is a clean and sustainable energy, and wind power does not rely on fossil fuels. So there is no fuel price risk, and it, of course, does not include the environmental costs, such as carbon emissions. Because of these unique advantages, wind power has gradually become an important part of the strategy of sustainable development in China. Now with the growing voices on global greenhouse gas emission reduction, and as a clean and efficient energy, wind power has huge potential in combating climate change, energy security pressures and the needs for energy. Wind power in China began to develop from the 1980s. In the first 20 years, the speed of development was slow; but since 2004, it has had an extremely rapid growth.This paper, in order to study the development mechanism of China&amp;amp;amp;#39;s wind power industry, investigated and analyzed the status quo of wind power industry in China, and then found that (1) the development trend of wind power industry in China appears exponential growth; (2) China&amp;amp;amp;#39;s installed capacity of wind power is still smaller than that os some other countries; (3) new subsidy policies bring developing opportunities to wind power industry in China; (4) the sectors of wind power industry are in unbalanced growing; (5) the owners of proposed wind farms are too optimistic though the built wind farm had many problems. In addition, by using the methodology of Game Theory, this paper has also constructed the matrix of pre-assessing risks of China&amp;amp;amp;#39;s wind power industry to further discuss the potential risk factors within China&amp;amp;amp;#39;s wind power industry as risk factors of wind farm construction, risk factors of production of wind turbines, risk factors of parts and components manufacturing industry under risk indicators like R&amp;amp;amp;amp;D, patents, the domestic policy, the international policy, the quality of products and the market regulation, in order to provide a scientific assessment and self-assessment tool for investors or implementers, and also to promote the further development of the wind power industry.
基金financially supported by the National Natural Science Foundation of China (Grant No.41572302)the Funds for Creative Research Groups of China (Grant No.41521002)
文摘In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.
文摘One day,can we foresee earthquakes? This question always comes back from every telluric disaster,and the seismology is well annoyed to answer it.The destructtion of the city of Kobe in Japan,on January 17th 1995,aroused deep debates upon the research policy on earthquakes.This disaster obviously shows our well limited capacity to take up the challenge of the prediction of earthquakes because,finally,it is indeed in Japan where authorities invest most in
文摘A theoretical model considering the relationship between fault characteristics and tectonic stress is proposed to quantify earthquake risk degree. The model is applied in practice to the fault along the southern margin of Weihe basin in Shaanxi Province, Northwestern China and fitted well with reality.
基金sponsored by the Special Fund for Earthquake Scientific Research of ERC
文摘Based on previous research results,present-day crustal deformation and gravity fields in the Chinese mainland are analyzed using the GPS data,leveling,gravity and cross-fault deformations. We analyzed strain accumulation of the major faults,and identified locked or high strain accumulation segments. Combining the effects of large earthquakes in the study area,the long-term (decade) probability of large earthquakes in the Chinese mainland is estimated.
文摘The article has been retracted due to the investigation of complaints received against it. The paper is withdrawn due to paper duplication which has been published by the author years before. This paper published in Vol.1 No.1 1-12 (pages), 2012, has been removed from this site.
文摘Based on the site historical earthquake data,a method of seismic risk analysis is presented.Once the frequency of earthquake response intensity and the relative value showed a logarithmic linear,the maximum similarity method would be used to obtain β,λ,and Imax,and also achieve the results of risk analysis on each site.At the same time,the "logic tree" method can be used to calibrate the uncertainty of the risk on each site.Then the final results of risk analysis indicate that this method is feasible,particularly for the sites showing intensity anomaly.
文摘Individual beliefs, knowledge, and perception play a vital role in understanding and coping with the consequences of earthquakes. These perceptions then mold the broader perceptions of risk and danger held by communities, which ultimately create public policy. This survey study was designed and conducted to assess the perceptions of seismic hazard and risk of earthquake survivors and residents in Al-Marj, Libya—a city razed in a 1963 tremor. In 2019, 364 earthquake survivors and residents were surveyed for their knowledge and perception of earthquakes. Surveys were conducted in Arabic and included demographic and narrative questions in addition to Likert-scaled responses. A number of predictable, surprising, and valuable correlations were found. It was found that during earthquakes most respondents prayed to Allah, or did nothing, in comparison to escape, seeking shelter, or running for help. The majority believed their neighborhoods were unsafe while questions illiciting some aspect of quake recurrence caused a complete refusal to answer;they commented “I do not know” or “only God knows”. Most respondents did not consider preparation to be important, but younger respondents were relatively more prepared. Surprisingly, highly educated respondents were less prepared, however, they also attributed earthquakes to tectonic slipping and not divine retaliation or retribution. However, less-educated respondents stated “I do not know”, “Allah punishes”, or “Allah tests the believers”. Most participants considered themselves well-informed about earthquakes from popular media sources (internet, TV, magazines). These findings were vital in gaining an insight into hazard perception and high-risk behavior in a seismically active region like Libya. When natural hazard recurrence (<em>i.e.</em> earthquakes) are better understood, then the potential consequences of injury, damages, and deaths may be assessed, and an overall plan to produce sustainable disaster management strategies and decrease risk can be created and implemented.