Vulnerability assessment and mapping play a crucial role in disaster risk reduction and planning for adaptation to a future earthquake.Turkey is one of the most at-risk countries for earthquake disasters worldwide.The...Vulnerability assessment and mapping play a crucial role in disaster risk reduction and planning for adaptation to a future earthquake.Turkey is one of the most at-risk countries for earthquake disasters worldwide.Therefore,it is imperative to develop effective earthquake vulnerability assessment and mapping at practically relevant scales.In this study,a holistic earthquake vulnerability index that addresses the multidimensional nature of earthquake vulnerability was constructed.With the aim of representing the vulnerability as a continuum across space,buildings were set as the smallest unit of analysis.The study area is in İzmit City of Turkey,with the exposed human and structural elements falling inside the most hazardous zone of seismicity.The index was represented by the building vulnerability,socioeconomic vulnerability,and vulnerability of the built environment.To minimize the subjectivity and uncertainty that the vulnerability indices based on expert knowledge are suffering from,an extension of the catastrophe progression method for the objective weighing of indicators was proposed.Earthquake vulnerability index and components were mapped,a local spatial autocorrelation metric was employed where the hotspot maps demarcated the earthquake vulnerability,and the study quantitatively revealed an estimate of people at risk.With its objectivity and straightforward implementation,the method can aid decision support for disaster risk reduction and emergency management.展开更多
The importance of workplace safety in the ready-made garment(RMG) industry in Bangladesh came to the forefront after a series of disastrous events in recent years. In order to reduce the loss of lives and to ensure su...The importance of workplace safety in the ready-made garment(RMG) industry in Bangladesh came to the forefront after a series of disastrous events in recent years. In order to reduce the loss of lives and to ensure sustainable development, an in-depth understanding of the determining factors governing structural vulnerability in the RMG industry is needed. This research explores the key factors influencing the vulnerability of factory buildings under both vertical and earthquake loads. For this purpose,an ordered probit model was applied to 3746 RMG factory buildings to determine the key factors that influenced their vertical load vulnerability. A smaller subset of the original sample, 478 buildings, was examined by the same modeling method in greater detail to assess the key factors that influenced their earthquake load vulnerability. This research reveals that column capacity, structural system,and construction materials are the most influential factors for both types of vulnerabilities. Among other factors, soil liquefaction and irregular internal frame affect earthquake load vulnerability significantly. These findings are expected to enable factory owners and designers to better weigh the appropriate vulnerability factors in order to make informed decision that increase workplace safety. Theresearch findings will also help the designated authorities to conduct successful inspections of factory buildings and take actions that reduce vulnerability to both vertical and earthquake loads.展开更多
基金supported by the Disaster and Emergency Management Presidency under Project No.AFAD-UDAP-Ç-19-06.
文摘Vulnerability assessment and mapping play a crucial role in disaster risk reduction and planning for adaptation to a future earthquake.Turkey is one of the most at-risk countries for earthquake disasters worldwide.Therefore,it is imperative to develop effective earthquake vulnerability assessment and mapping at practically relevant scales.In this study,a holistic earthquake vulnerability index that addresses the multidimensional nature of earthquake vulnerability was constructed.With the aim of representing the vulnerability as a continuum across space,buildings were set as the smallest unit of analysis.The study area is in İzmit City of Turkey,with the exposed human and structural elements falling inside the most hazardous zone of seismicity.The index was represented by the building vulnerability,socioeconomic vulnerability,and vulnerability of the built environment.To minimize the subjectivity and uncertainty that the vulnerability indices based on expert knowledge are suffering from,an extension of the catastrophe progression method for the objective weighing of indicators was proposed.Earthquake vulnerability index and components were mapped,a local spatial autocorrelation metric was employed where the hotspot maps demarcated the earthquake vulnerability,and the study quantitatively revealed an estimate of people at risk.With its objectivity and straightforward implementation,the method can aid decision support for disaster risk reduction and emergency management.
基金the International Labor Organization(ILO)for financial support to conduct this research
文摘The importance of workplace safety in the ready-made garment(RMG) industry in Bangladesh came to the forefront after a series of disastrous events in recent years. In order to reduce the loss of lives and to ensure sustainable development, an in-depth understanding of the determining factors governing structural vulnerability in the RMG industry is needed. This research explores the key factors influencing the vulnerability of factory buildings under both vertical and earthquake loads. For this purpose,an ordered probit model was applied to 3746 RMG factory buildings to determine the key factors that influenced their vertical load vulnerability. A smaller subset of the original sample, 478 buildings, was examined by the same modeling method in greater detail to assess the key factors that influenced their earthquake load vulnerability. This research reveals that column capacity, structural system,and construction materials are the most influential factors for both types of vulnerabilities. Among other factors, soil liquefaction and irregular internal frame affect earthquake load vulnerability significantly. These findings are expected to enable factory owners and designers to better weigh the appropriate vulnerability factors in order to make informed decision that increase workplace safety. Theresearch findings will also help the designated authorities to conduct successful inspections of factory buildings and take actions that reduce vulnerability to both vertical and earthquake loads.