This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC)....This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.展开更多
Important progresses of the study of the general circulation and monsoons in East Asia,which have been made since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.Zhu Kezhen,are ex...Important progresses of the study of the general circulation and monsoons in East Asia,which have been made since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.Zhu Kezhen,are extensively reviewed in memory of this founder of modern meteorology in China.The first part has addressed the bimodality of the general circulation and the abrupt seasonal change.The second part has dealt with the role of the continent-ocean contrast and topography in the dynamic and thermal processes of mon- soon development,including winter and summer monsoons,and associated heat sources and sinks.The third part has discussed the monsoonal precipitation,with a special emphasis on the mesoscale disturbance,low-level jet and interannual variability of Meiyu(plum rains).展开更多
In correspondence with the establishment of the“upper high and lower high”pressure pattern due to the activities of 500 hPa high over the Tibetan Plateau in summer,a series of changes of the East Asia atmospheric ci...In correspondence with the establishment of the“upper high and lower high”pressure pattern due to the activities of 500 hPa high over the Tibetan Plateau in summer,a series of changes of the East Asia atmospheric circulation will take place.In this paper,the distributions of divergence and vertical velocity of 500 hPa high,the evolutions of atmos- pheric heat source,the variations of vorticity and zonal wind at 100 hPa level and vertical meridional cell over the Tibetan Plateau etc.are statistically analyzed.Thus,we can see that the ascending motion and the convective heating over the Tibetan Plateau,the South Asia high and the westerly jet on the north of the Plateau at 100 hPa level are weak- ened.The northern branch and the southern branch of the easterly jet on the south of the Plateau merge into a single whole and situate on the south of the former northern branch.In the meantime,thermodynamic land-sea discrepancy in South Asia and the convective heating over the Bay of Bengal is enhanced.It will play an important role in the mainte- nance of the easterly jet and the South Asia monsoon.展开更多
基金supported by the National Key Project for Basic Science Development (Grant No. 2015CB453203)the National Key Research and Development Program (Grant No. 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41661144017)
文摘This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.
文摘Important progresses of the study of the general circulation and monsoons in East Asia,which have been made since the pioneering work“Monsoons in Southeast Asia and rainfall amount in China”by Prof.Zhu Kezhen,are extensively reviewed in memory of this founder of modern meteorology in China.The first part has addressed the bimodality of the general circulation and the abrupt seasonal change.The second part has dealt with the role of the continent-ocean contrast and topography in the dynamic and thermal processes of mon- soon development,including winter and summer monsoons,and associated heat sources and sinks.The third part has discussed the monsoonal precipitation,with a special emphasis on the mesoscale disturbance,low-level jet and interannual variability of Meiyu(plum rains).
基金This study is partially supported by the National Natural Science Foundation of China.
文摘In correspondence with the establishment of the“upper high and lower high”pressure pattern due to the activities of 500 hPa high over the Tibetan Plateau in summer,a series of changes of the East Asia atmospheric circulation will take place.In this paper,the distributions of divergence and vertical velocity of 500 hPa high,the evolutions of atmos- pheric heat source,the variations of vorticity and zonal wind at 100 hPa level and vertical meridional cell over the Tibetan Plateau etc.are statistically analyzed.Thus,we can see that the ascending motion and the convective heating over the Tibetan Plateau,the South Asia high and the westerly jet on the north of the Plateau at 100 hPa level are weak- ened.The northern branch and the southern branch of the easterly jet on the south of the Plateau merge into a single whole and situate on the south of the former northern branch.In the meantime,thermodynamic land-sea discrepancy in South Asia and the convective heating over the Bay of Bengal is enhanced.It will play an important role in the mainte- nance of the easterly jet and the South Asia monsoon.