A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The ...A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similarto-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.展开更多
By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East...By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth's orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.展开更多
The siliciclastic sediments of the uppermost section of 185 mcd (meters composite depth) from ODP Site 1146 on the northern continental slope of the South China Sea (SCS) were partitioned according to their source...The siliciclastic sediments of the uppermost section of 185 mcd (meters composite depth) from ODP Site 1146 on the northern continental slope of the South China Sea (SCS) were partitioned according to their sources using end-member modeling on grain-size data.The goal was to evaluate the evolution of the East Asian monsoon over the past 2 million years.The siliciclastic sediments were described as hybrids of four end-members,EM1,EM2,EM3,and EM4,with modal grain sizes of 8-22 μm,2-8 μm,31-125 μm,and 4-11 μm,respectively.EM1 and EM3 are interpreted as eolian dust and EM2 and EM4 as fluvial mud.The ratio of eolian dust to fluvial mud ((EM1+EM3)/(EM2+EM4)) is regarded as an indicator of the East Asian monsoon.The variation in this ratio not only shows periodical oscillations consistent with oxygen isotope stages,but also exhibits a phased increasing trend corresponding with the phased uplifts of the Tibetan Plateau,indicating that the evolution of the East Asian Monsoon was controlled not only by glacial-interglacial cycles,but also by the phased uplifts of the Tibetan Plateau during the Quaternary.展开更多
Studies on the impact of solar activity on climate system are very important in understanding global climate change. Previous studies in this field were mostly focus on temperature, wind and geopotential height. In th...Studies on the impact of solar activity on climate system are very important in understanding global climate change. Previous studies in this field were mostly focus on temperature, wind and geopotential height. In this paper, interdecadal correlations of solar activity with Winter Snow Depth Index (WSDI) over the Tibetan Plateau, Arctic Oscillation Index (AOI) and the East Asian Winter Monsoon Index (EAWMI) are detected respectively by using Solar Radio Flux (SRF), Total Solar Irradiance (TSI) and Solar Sunspot Number (SSN) data and statistical methods. Arctic Oscillation and East Asian winter monsoon are typical modes of the East Asian atmospheric circulation. Research results show that on inter-decadal time scale over 11-year solar cycle, the sun modulated changes of winter snow depth over the Tibetan Plateau and East Asian atmospheric circulation. At the fourth lag year, the correlation coefficient of SRF and snow depth is 0.8013 at 0.05 significance level by Monte-Carlo test method. Our study also shows that winter snow depth over the Tibetan Plateau has significant lead and lag correlations with Arctic Oscillation and the East Asian winter monsoon on long time scale. With more snow in winter, the phase of Arctic Oscillation is positive, and East Asian winter monsoon is weak, while with less snow, the parameters are reversed. An example is the winter of 2012/2013, with decreased Tibetan Plateau snow, phase of Arctic Oscillation was negative, and East Asian winter monsoon was strong.展开更多
The influences of interannual surface potential vorticity forcing over the Tibetan Plateau(TP)on East Asian summer rainfall(EASR)and upper-level circulation are explored in this study.The results show that the interan...The influences of interannual surface potential vorticity forcing over the Tibetan Plateau(TP)on East Asian summer rainfall(EASR)and upper-level circulation are explored in this study.The results show that the interannual EASR and associated circulations are closely related to the surface potential vorticity negative uniform leading mode(PVNUM)over the TP.When the PVNUM is in the positive phase,more rainfall occurs in the Yangtze River valley,South Korea,Japan,and part of northern China,less rainfall occurs in southern China,and vice versa.A possible mechanism by which PVNUM affects EASR is proposed.Unstable air induced by the positive phase of PVNUM could stimulate significant upward motion and a lower-level anomalous cyclone over the TP.As a result,a dipole heating mode with anomalous cooling over the southwestern TP and anomalous heating over the southeastern TP is generated.Sensitivity experiment results regarding this dipole heating mode indicate that anomalous cooling over the southwestern TP leads to local and northeastern Asian negative height anomalies,while anomalous heating over the southeastern TP leads to local positive height anomalies.These results greatly resemble the realistic circulation pattern associated with EASR.Further analysis indicates that the anomalous water vapor transport associated with this anomalous circulation pattern is responsible for the anomalous EASR.Consequently,changes in surface potential vorticity forcing over the TP can induce changes in EASR.展开更多
The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation...The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests.展开更多
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region...This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.展开更多
The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly di...The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly differentiated peralkaline-like Xiangride rhyolites(~209 Ma)that differ from the widespread andesitic-rhyolitic Elashan volcanics(~232–225 Ma)in terms of their field occurrences and mineral assemblages.The older,more common calc-alkaline felsic Elashan volcanics may have originated from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions associated with continental collision.The felsic Elashan volcanics and syn-collisional granitoids of the EKOB are different products of the same magmatic event related to continental collision.The Xiangride rhyolites are characterized by elevated abundances of high field strength elements,especially the very high Nb and Ta contents,the very low Ba,Sr,Eu,P,and Ti contents;and the variably high ^(87)Sr/^(86)Sr ratios(up to 0.96),exhibiting remarkable similarities to the characteristic peralkaline rhyolites.The primitive magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent protracted fractional crystallization with continental crust contamination.The rock associations from the early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from syn-collisional to post-collisional.We infer that the transition from collisional compression to postcollisional extension occurred at about 220 Ma.展开更多
Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR)and the rainfall data of 160 Chinese surface stations,the...Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR)and the rainfall data of 160 Chinese surface stations,the relationship between rainfall and the atmospheric circulation anomaly over East Asia(EA)in July and the sensible heating(SH)over the Tibetan Plateau(TP)from April to June(AMJ)is investigated by using the rotational experimental orthogonal function(REOF)method.The results show that the TP is an isolated heating source in this period.The lagged correlation analysis between the first rotational principal component(RPC)of SH over the TP in May and rainfall of EA in July demonstrates that strong SH over the TP before July leads to a positive rainfall anomaly over the TP,the valley between the Yangtze River and Huaihe River,and the regions south and southeast of the TP,and the Sichuan Basin and Yunnan-Guizhou Plateau,but less rainfall anomaly over the regions north,northeast,and west of the TP.Such rainfall anomaly patterns are shown to be well coordinated with those of the circulation and vapor flux fields,and are explained by using the thermal adaptation theory and quasi-stationary large-scale vorticity equation.Therefore,the status of SH over the TP during AMJ can be used as a predictor for the rainfall anomaly over EA,especially in the valley between the Yangtze River and Huaihe River.展开更多
The current work examines the impact of the snow cover extent(SCE)of the Tibetan Plateau(TP)on the interannual variation in the summer(June−July−August)surface air temperature(SAT)over Central Asia(CA)(SAT_CA)during t...The current work examines the impact of the snow cover extent(SCE)of the Tibetan Plateau(TP)on the interannual variation in the summer(June−July−August)surface air temperature(SAT)over Central Asia(CA)(SAT_CA)during the 1979−2019 period.The leading mode of the summer SAT_CA features a same-sign temperature anomalies in CA and explains 62%of the total variance in SAT_CA.The atmospheric circulation associated with a warming SAT_CA is characterized by a pronounced high-pressure system dominating CA.The high-pressure system is accompanied by warm advection as well as descending motion over CA,favoring the warming of the SAT_CA.Analysis shows that the interannual variation in the summer SAT_CA is significantly positively correlated with the April SCE over the central-eastern TP.In April,higher than normal SCE over the central-eastern TP has a pronounced cooling effect on the column of the atmosphere above the TP and can persist until the following early summer.Negative and positive height anomalies appear above and to the west of the TP.In the following months,the perturbation forcing generated by the TP SCE anomalies lies near the western center of the Asian subtropical westerly jet(SWJ),which promotes atmospheric waves in the zonal direction guided by the Asian SWJ.Associated with this atmospheric wave,in the following summer,a significant high-pressure system dominates CA,which is a favorable condition for a warm summer SAT_CA.展开更多
Based on NCEP/NCAR reanalysis monthly data,the relation between the surface sensible heat flux,(SHTFL) in the Tibetan Plateau and its vicinity and the East Asian winter monsoon is revealed as follows:on the inter-annu...Based on NCEP/NCAR reanalysis monthly data,the relation between the surface sensible heat flux,(SHTFL) in the Tibetan Plateau and its vicinity and the East Asian winter monsoon is revealed as follows:on the inter-annual and longer time scales,the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has influence on the East Asian winter monsoon,that is,SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would become more vigorous,and vice versa.Both the most significant period of the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau and that of the East Asian winter monsoon index are 2 to 4-year time scales.On the 2 to 4-year time scales,the heterogeneous spatial distribution of SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has effect on the East Asian winter monsoon,after SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would be more powerful,and vice versa.The lag influence of the difference of SHTFL anomalies in the east and southern slope of the Tibetan Plateau on the East Asian winter monsoon brings into effect mainly on 2 to 4-year time scales.In the end an reasonable explanation for their relationship has been discussed.展开更多
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actua...Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.展开更多
The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accoun...The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.展开更多
This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961...This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961-2006. We used monthly precipitation and temperature data from 160 stations in China for 1951-2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer pre- cipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming.展开更多
The heating sources over the Tibetan Plateau(TP),the East Asian plain,and the western North Pacific(WNP)form a terraced thermal contrast in the west-east direction.Over East Asia and the WNP,this zonal thermal contras...The heating sources over the Tibetan Plateau(TP),the East Asian plain,and the western North Pacific(WNP)form a terraced thermal contrast in the west-east direction.Over East Asia and the WNP,this zonal thermal contrast contributes as high as 45%to the seasonal variance based on the EOF analysis and exerts a significant impact on the seasonal transition of the East Asian climate through the enhancement of the year-round southerly to the southeast of the TP in late March and early April.This effect is investigated in this study using a high-resolution regional atmospheric model by doubling the surface sensible heat flux,respectively,over the TP,the East Asian plain,and the WNP in three sensitivity experiments.Comparisons among the experiments reveal that doubling the surface sensible heat flux over the WNP has little upstream response over East Asia.The increased zonal thermal contrast between the TP and the East Asian plain due to doubled heat flux over the TP would induce anomalous northerly over the region with year-round southerly to the southeast of the TP and weaken its seasonal enhancement.Doubling the surface sensible heat flux over the East Asian plain decreases the zonal thermal contrast and leads to southerly anomaly over the region with year-round southerly to the southeast of the TP and South China,which is favorable for the enhancement of the year-round southerly and its eastward extension.展开更多
The evident effects of the thermal anomalies over the Tibetan Plateau (TP) and its vicinities are summarized and discussed in this paper. By the singular value decomposition (SVD) technique and numerical simulations o...The evident effects of the thermal anomalies over the Tibetan Plateau (TP) and its vicinities are summarized and discussed in this paper. By the singular value decomposition (SVD) technique and numerical simulations of the effect of the snow depth anomaly over the TP, it is shown that the snow depth anomaly, especially in winter, is one of the factors innuencing precipitation in China, and the winter snow anomaly is more important than the spring one. The relations between the sensible heat anomaly over the TP and the intensity of the South China Sea summer monsoon (SCSSM) are studied, too, and two key areas of the sensible heat anomaly over the TP are found. The relationships between the South Asia High (SAH) and the precipitation in the years with typical droughts or floods in the mid to lower valleys of the Yangtze River (MLVYR) and North China are investigated in some detail. It is found that not only the intensity of the SAH over the TP, but also the 100-hPa height in a large area influences the precipitation in the above two regions. The effects of the SAH on the onsets of the tropical Asian summer monsoon (TASM) including the SCSSM and the tropical Indian summer monsoon (TISM) are studied as well. It is found that the onset times of both the SCSSM and the TISM are highly dependent upon the latitudinal position of the SAH center.展开更多
Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease...Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest decrease in spring, then winter and autumn, and the slowest in summer, In spring and winter the SNC decreases faster in the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different regions and seasons.展开更多
This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture ...This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture divergence using in situ observations and ERA40 reanalysis data. The results indicate that the climate can be attributed to four regimes around the Plateau. They situate in East Asia, South Asia, Central Asia and the semi-arid zone in northern Central Asia throughout the dryland of northwestern China, in addition to the K?oppen climate classification. There are different collocations of seasonal temperature and precipitation: 1) in phase for the East and South Asia monsoon regimes, 2) anti-phase for theCentral Asia regime, 3) out-of-phase for the westerly regime. The seasonal precipitation concentrations are coupled with moisture divergence, i.e., moisture convergence coincides with the Asian monsoon zone and divergence appears over the Mediterranean-like arid climate region and westerly controlled area in the warm season, while it reverses course in the cold season. In addition, moisture divergence is associated with meridional moisture transport. The northward/southward moisture transport corresponds to moisture convergence/divergence, indicating that the wet and dry seasons are, to a great extent, dominated by meridional moisture transport in these regions. The climate mean southward transport results in the dry-cold season of the Asian monsoon zone and the dry-warm season, leading to desertification or land degradation in Central Asia and the westerly regime zone. The mean-wind moisture transport (MMT) is the major contributor to total moisture transport, while persistent northward transient eddy moisture transport (TEMT) plays a key role in dry season precipitation, especially in the Asian monsoon zone. The persistent TEMT divergence is an additional mechanism of the out-of-phase collocation in the westerly regime zone. In addition, the climatemean MMTand TEMTare associated with the atmospheric stationary wave and storm track, which results from the uplift of orography and landsea thermal contrast. Therefore, the paleoclimate changes in mid-latitude arid-semi-arid regions are linked to the different phases of uplift of mountains and plate motion tied to the evolution of the Mediterranean.展开更多
The Tibetan Plateau is a key factor for the pattern of the general circulation of the atmosphere (GCA) in eastern Asia. The pattern of the GCA after the uplift of the plateau is well known, while the pattern of the GC...The Tibetan Plateau is a key factor for the pattern of the general circulation of the atmosphere (GCA) in eastern Asia. The pattern of the GCA after the uplift of the plateau is well known, while the pattern of the GCA before the uplift of the plateau is lack of direct evidences. Based on the knowability of desert, a section recording wind directions across the Cretaceous northern hemisphere mid-low latitude desert belt is measured and the pattern of the GCA in the Cretaceous is revealed. The result shows that the eastern Asia was really controlled by the planetary circulation before the uplift of the plateau, i.e. westerlies in the north and northeast trades in the south. The convert belt between westerlies and trades had drifted northwards and southwards. The possibility of existence of paleo-monsoon is also dealt with and a possibly imposed paleo-monsoon is suggested.展开更多
基金the Chinese Academy of Sciences under Grant Nos. KZCX2-YW-205 and KZCX3-SW-229the National NaturalScience Foundation of China under Grant Nos. 40505017and 40775052.
文摘A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similarto-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.
基金This research was supported by the Na- tional Natural Science Foundation of China (NSFC) (Grant No. 40571169) the NSFC Innovation Team Project (Grant No. 40421101).
文摘By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth's orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.
基金Funding for this research was provided by the National Natural Science Foundation of China (NSFC), grant number 40576034
文摘The siliciclastic sediments of the uppermost section of 185 mcd (meters composite depth) from ODP Site 1146 on the northern continental slope of the South China Sea (SCS) were partitioned according to their sources using end-member modeling on grain-size data.The goal was to evaluate the evolution of the East Asian monsoon over the past 2 million years.The siliciclastic sediments were described as hybrids of four end-members,EM1,EM2,EM3,and EM4,with modal grain sizes of 8-22 μm,2-8 μm,31-125 μm,and 4-11 μm,respectively.EM1 and EM3 are interpreted as eolian dust and EM2 and EM4 as fluvial mud.The ratio of eolian dust to fluvial mud ((EM1+EM3)/(EM2+EM4)) is regarded as an indicator of the East Asian monsoon.The variation in this ratio not only shows periodical oscillations consistent with oxygen isotope stages,but also exhibits a phased increasing trend corresponding with the phased uplifts of the Tibetan Plateau,indicating that the evolution of the East Asian Monsoon was controlled not only by glacial-interglacial cycles,but also by the phased uplifts of the Tibetan Plateau during the Quaternary.
基金funded by the National Science Foundation of China (No. 41575091)the National Basic Research and Development (973) Program of China (Grant No. 2012CB957803 and No. 2012CB957804)
文摘Studies on the impact of solar activity on climate system are very important in understanding global climate change. Previous studies in this field were mostly focus on temperature, wind and geopotential height. In this paper, interdecadal correlations of solar activity with Winter Snow Depth Index (WSDI) over the Tibetan Plateau, Arctic Oscillation Index (AOI) and the East Asian Winter Monsoon Index (EAWMI) are detected respectively by using Solar Radio Flux (SRF), Total Solar Irradiance (TSI) and Solar Sunspot Number (SSN) data and statistical methods. Arctic Oscillation and East Asian winter monsoon are typical modes of the East Asian atmospheric circulation. Research results show that on inter-decadal time scale over 11-year solar cycle, the sun modulated changes of winter snow depth over the Tibetan Plateau and East Asian atmospheric circulation. At the fourth lag year, the correlation coefficient of SRF and snow depth is 0.8013 at 0.05 significance level by Monte-Carlo test method. Our study also shows that winter snow depth over the Tibetan Plateau has significant lead and lag correlations with Arctic Oscillation and the East Asian winter monsoon on long time scale. With more snow in winter, the phase of Arctic Oscillation is positive, and East Asian winter monsoon is weak, while with less snow, the parameters are reversed. An example is the winter of 2012/2013, with decreased Tibetan Plateau snow, phase of Arctic Oscillation was negative, and East Asian winter monsoon was strong.
基金the National Natural Science Foundation of China(Grant Nos.91837101,42122035,and 91937302)the National Key Research and Development Program of China(Grant No.2018YFC1505706 and 2020YFA0608903).
文摘The influences of interannual surface potential vorticity forcing over the Tibetan Plateau(TP)on East Asian summer rainfall(EASR)and upper-level circulation are explored in this study.The results show that the interannual EASR and associated circulations are closely related to the surface potential vorticity negative uniform leading mode(PVNUM)over the TP.When the PVNUM is in the positive phase,more rainfall occurs in the Yangtze River valley,South Korea,Japan,and part of northern China,less rainfall occurs in southern China,and vice versa.A possible mechanism by which PVNUM affects EASR is proposed.Unstable air induced by the positive phase of PVNUM could stimulate significant upward motion and a lower-level anomalous cyclone over the TP.As a result,a dipole heating mode with anomalous cooling over the southwestern TP and anomalous heating over the southeastern TP is generated.Sensitivity experiment results regarding this dipole heating mode indicate that anomalous cooling over the southwestern TP leads to local and northeastern Asian negative height anomalies,while anomalous heating over the southeastern TP leads to local positive height anomalies.These results greatly resemble the realistic circulation pattern associated with EASR.Further analysis indicates that the anomalous water vapor transport associated with this anomalous circulation pattern is responsible for the anomalous EASR.Consequently,changes in surface potential vorticity forcing over the TP can induce changes in EASR.
基金Supported by National Natural Science Foundation of China(40901057)Key Project of Chinese National Programs for Fundamental Research and Development(2010CB951704)~~
文摘The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests.
基金the auspice of National Key Basic Project(973)(granted number 2008CB425702)National Science and Technology Project(granted Number SinoProbe-08)China Geological Survey project(granted number1212010670104)
文摘This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.
基金This work was mainly supported by National Natural Science Foundation of China(NNSF,Grant No.41803028)Natural Science Foundation of Shandong Province(NSFSP,Grant No.ZR2018BD020)to Fengli Shao+2 种基金Grant Nos.41802201,41630968 and 41688103 from NNSFGrant Nos.ZR2018BD012 and ZR2020QD044 from NSFSPGrant No.2019RZA02002 from soft science project of Shandong Province Key Research and Development Plan。
文摘The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly differentiated peralkaline-like Xiangride rhyolites(~209 Ma)that differ from the widespread andesitic-rhyolitic Elashan volcanics(~232–225 Ma)in terms of their field occurrences and mineral assemblages.The older,more common calc-alkaline felsic Elashan volcanics may have originated from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions associated with continental collision.The felsic Elashan volcanics and syn-collisional granitoids of the EKOB are different products of the same magmatic event related to continental collision.The Xiangride rhyolites are characterized by elevated abundances of high field strength elements,especially the very high Nb and Ta contents,the very low Ba,Sr,Eu,P,and Ti contents;and the variably high ^(87)Sr/^(86)Sr ratios(up to 0.96),exhibiting remarkable similarities to the characteristic peralkaline rhyolites.The primitive magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent protracted fractional crystallization with continental crust contamination.The rock associations from the early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from syn-collisional to post-collisional.We infer that the transition from collisional compression to postcollisional extension occurred at about 220 Ma.
基金supported by the National Natural Science Foundation of China(Grant Nos.40405016,4047502740135020,40221503 and 40023001)the Chinese Academy of Scienccs(Grant No.ZKCX2-SW-210).
文摘Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR)and the rainfall data of 160 Chinese surface stations,the relationship between rainfall and the atmospheric circulation anomaly over East Asia(EA)in July and the sensible heating(SH)over the Tibetan Plateau(TP)from April to June(AMJ)is investigated by using the rotational experimental orthogonal function(REOF)method.The results show that the TP is an isolated heating source in this period.The lagged correlation analysis between the first rotational principal component(RPC)of SH over the TP in May and rainfall of EA in July demonstrates that strong SH over the TP before July leads to a positive rainfall anomaly over the TP,the valley between the Yangtze River and Huaihe River,and the regions south and southeast of the TP,and the Sichuan Basin and Yunnan-Guizhou Plateau,but less rainfall anomaly over the regions north,northeast,and west of the TP.Such rainfall anomaly patterns are shown to be well coordinated with those of the circulation and vapor flux fields,and are explained by using the thermal adaptation theory and quasi-stationary large-scale vorticity equation.Therefore,the status of SH over the TP during AMJ can be used as a predictor for the rainfall anomaly over EA,especially in the valley between the Yangtze River and Huaihe River.
基金the National Natural Science Foundation of China(Grant No.42075050).
文摘The current work examines the impact of the snow cover extent(SCE)of the Tibetan Plateau(TP)on the interannual variation in the summer(June−July−August)surface air temperature(SAT)over Central Asia(CA)(SAT_CA)during the 1979−2019 period.The leading mode of the summer SAT_CA features a same-sign temperature anomalies in CA and explains 62%of the total variance in SAT_CA.The atmospheric circulation associated with a warming SAT_CA is characterized by a pronounced high-pressure system dominating CA.The high-pressure system is accompanied by warm advection as well as descending motion over CA,favoring the warming of the SAT_CA.Analysis shows that the interannual variation in the summer SAT_CA is significantly positively correlated with the April SCE over the central-eastern TP.In April,higher than normal SCE over the central-eastern TP has a pronounced cooling effect on the column of the atmosphere above the TP and can persist until the following early summer.Negative and positive height anomalies appear above and to the west of the TP.In the following months,the perturbation forcing generated by the TP SCE anomalies lies near the western center of the Asian subtropical westerly jet(SWJ),which promotes atmospheric waves in the zonal direction guided by the Asian SWJ.Associated with this atmospheric wave,in the following summer,a significant high-pressure system dominates CA,which is a favorable condition for a warm summer SAT_CA.
基金Supported by the National Key Fundamental Research Project"Research on the Formation Mechanism and the Prediction Theory of Hazardous Weather over China"
文摘Based on NCEP/NCAR reanalysis monthly data,the relation between the surface sensible heat flux,(SHTFL) in the Tibetan Plateau and its vicinity and the East Asian winter monsoon is revealed as follows:on the inter-annual and longer time scales,the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has influence on the East Asian winter monsoon,that is,SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would become more vigorous,and vice versa.Both the most significant period of the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau and that of the East Asian winter monsoon index are 2 to 4-year time scales.On the 2 to 4-year time scales,the heterogeneous spatial distribution of SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has effect on the East Asian winter monsoon,after SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would be more powerful,and vice versa.The lag influence of the difference of SHTFL anomalies in the east and southern slope of the Tibetan Plateau on the East Asian winter monsoon brings into effect mainly on 2 to 4-year time scales.In the end an reasonable explanation for their relationship has been discussed.
基金This study was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant numbers 41675083 and 41991281].
文摘Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.
基金supported by the National Basic Research Program (973 Program, Grant No. 2012CB417203)the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201406001)+1 种基金Strategic Leading Science Projects of the Chinese Academy of Sciences (Grant No. XDA11010402)the National National Science Foundation of China (Grant Nos. 91337110 and 40805038)
文摘The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.
基金supported by the Ministry of Science and Technology Project under No.2012CB957803 and No. 2007BAC29B02Special Fund on Climate Change of China Meteorological Administration under Grant No. CCSF2007-2C
文摘This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961-2006. We used monthly precipitation and temperature data from 160 stations in China for 1951-2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer pre- cipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming.
基金supported by the National Natural Science Foundation of China(40905044 and 41075068)the National Key Technologies R&D Program of China(2012BAC22B03)the Program for Changjiang Scholars and Innovative Research Team in University,and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The heating sources over the Tibetan Plateau(TP),the East Asian plain,and the western North Pacific(WNP)form a terraced thermal contrast in the west-east direction.Over East Asia and the WNP,this zonal thermal contrast contributes as high as 45%to the seasonal variance based on the EOF analysis and exerts a significant impact on the seasonal transition of the East Asian climate through the enhancement of the year-round southerly to the southeast of the TP in late March and early April.This effect is investigated in this study using a high-resolution regional atmospheric model by doubling the surface sensible heat flux,respectively,over the TP,the East Asian plain,and the WNP in three sensitivity experiments.Comparisons among the experiments reveal that doubling the surface sensible heat flux over the WNP has little upstream response over East Asia.The increased zonal thermal contrast between the TP and the East Asian plain due to doubled heat flux over the TP would induce anomalous northerly over the region with year-round southerly to the southeast of the TP and weaken its seasonal enhancement.Doubling the surface sensible heat flux over the East Asian plain decreases the zonal thermal contrast and leads to southerly anomaly over the region with year-round southerly to the southeast of the TP and South China,which is favorable for the enhancement of the year-round southerly and its eastward extension.
基金the Chinese Academy of Sciences(ZKCX2-SW-210)the National Natural Science Foundation of China under Grant Nos.40175021 and 40233037.
文摘The evident effects of the thermal anomalies over the Tibetan Plateau (TP) and its vicinities are summarized and discussed in this paper. By the singular value decomposition (SVD) technique and numerical simulations of the effect of the snow depth anomaly over the TP, it is shown that the snow depth anomaly, especially in winter, is one of the factors innuencing precipitation in China, and the winter snow anomaly is more important than the spring one. The relations between the sensible heat anomaly over the TP and the intensity of the South China Sea summer monsoon (SCSSM) are studied, too, and two key areas of the sensible heat anomaly over the TP are found. The relationships between the South Asia High (SAH) and the precipitation in the years with typical droughts or floods in the mid to lower valleys of the Yangtze River (MLVYR) and North China are investigated in some detail. It is found that not only the intensity of the SAH over the TP, but also the 100-hPa height in a large area influences the precipitation in the above two regions. The effects of the SAH on the onsets of the tropical Asian summer monsoon (TASM) including the SCSSM and the tropical Indian summer monsoon (TISM) are studied as well. It is found that the onset times of both the SCSSM and the TISM are highly dependent upon the latitudinal position of the SAH center.
基金supported by the National Key Science and Technology Program of Ministry of Science and Technology of China (Grant No. 2007BAC03A01)
文摘Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest decrease in spring, then winter and autumn, and the slowest in summer, In spring and winter the SNC decreases faster in the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different regions and seasons.
文摘This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture divergence using in situ observations and ERA40 reanalysis data. The results indicate that the climate can be attributed to four regimes around the Plateau. They situate in East Asia, South Asia, Central Asia and the semi-arid zone in northern Central Asia throughout the dryland of northwestern China, in addition to the K?oppen climate classification. There are different collocations of seasonal temperature and precipitation: 1) in phase for the East and South Asia monsoon regimes, 2) anti-phase for theCentral Asia regime, 3) out-of-phase for the westerly regime. The seasonal precipitation concentrations are coupled with moisture divergence, i.e., moisture convergence coincides with the Asian monsoon zone and divergence appears over the Mediterranean-like arid climate region and westerly controlled area in the warm season, while it reverses course in the cold season. In addition, moisture divergence is associated with meridional moisture transport. The northward/southward moisture transport corresponds to moisture convergence/divergence, indicating that the wet and dry seasons are, to a great extent, dominated by meridional moisture transport in these regions. The climate mean southward transport results in the dry-cold season of the Asian monsoon zone and the dry-warm season, leading to desertification or land degradation in Central Asia and the westerly regime zone. The mean-wind moisture transport (MMT) is the major contributor to total moisture transport, while persistent northward transient eddy moisture transport (TEMT) plays a key role in dry season precipitation, especially in the Asian monsoon zone. The persistent TEMT divergence is an additional mechanism of the out-of-phase collocation in the westerly regime zone. In addition, the climatemean MMTand TEMTare associated with the atmospheric stationary wave and storm track, which results from the uplift of orography and landsea thermal contrast. Therefore, the paleoclimate changes in mid-latitude arid-semi-arid regions are linked to the different phases of uplift of mountains and plate motion tied to the evolution of the Mediterranean.
基金the National Natural Science Foundation of China (Grant No. 49572113).
文摘The Tibetan Plateau is a key factor for the pattern of the general circulation of the atmosphere (GCA) in eastern Asia. The pattern of the GCA after the uplift of the plateau is well known, while the pattern of the GCA before the uplift of the plateau is lack of direct evidences. Based on the knowability of desert, a section recording wind directions across the Cretaceous northern hemisphere mid-low latitude desert belt is measured and the pattern of the GCA in the Cretaceous is revealed. The result shows that the eastern Asia was really controlled by the planetary circulation before the uplift of the plateau, i.e. westerlies in the north and northeast trades in the south. The convert belt between westerlies and trades had drifted northwards and southwards. The possibility of existence of paleo-monsoon is also dealt with and a possibly imposed paleo-monsoon is suggested.