期刊文献+
共找到607篇文章
< 1 2 31 >
每页显示 20 50 100
Variation of East Asian Summer Monsoon and Its Relationship with Precipitation of China in Recent 111 Years 被引量:8
1
作者 杨浩 智协飞 +1 位作者 高洁 刘樱 《Agricultural Science & Technology》 CAS 2011年第11期1711-1716,共6页
Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characte... Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characteristics of East Asian summer monsoon were analyzed. The results showed that East Asian summer monsoon in the 1920s was the strongest. The intensity of East Asian summer monsoon after the middle period of the 1980s presented weakened trend. It was the weakest in the early 21st century. Morlet wavelet analysis found that the interdecadal and interannual variations of East Asian summer monsoon had quasi-10-year and quasi-2-year significance periods. The interannual variation of precipitation in the east of China closely related to intensity variation of East Asian summer monsoon. In strong (weak) East Asian summer monsoon year, the rainfall in the middle and low reaches of Yangtze River was less (more) than that in common year, while the rainfall in North China was more (less) than that in common year. The weakening of East Asian summer monsoon was an important reason for that it was rainless (drought) in North China and rainy (flood) in the middle and low reaches of the Yangtze River after the middle period of the 1980s. 展开更多
关键词 east asian summer monsoon VARIATION precipitation of China
下载PDF
The Relationship between the East Asian Subtropical Westerly Jet and Summer Precipitation over East Asia as Simulated by the IAP AGCM4.0 被引量:8
2
作者 YAN Zheng-Bin LIN Zhao-Hui ZHANG He 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期487-492,共6页
Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been... Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes. 展开更多
关键词 east asian subtropical westerly jet summer precipitation IAP AGCM4.0 model evaluation
下载PDF
The Relationship between Melt Season Sea Ice over the Bering Sea and Summer Precipitation over Mid-Latitude East Asia 被引量:5
3
作者 Yurun TIAN Yongqi GAO Dong GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期918-930,共13页
Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern Ch... Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China.In this study,four sea ice datasets(HadISST1,HadISST2.2,ERA-Interim and NOAA/NSIDC)and two global precipitation datasets(CRU V4.01 and GPCP V2.3)are used to investigate co-variations between melt season(March−April−May−June,MAMJ)Bering Sea ice cover(BSIC)and summer(June−July−August,JJA)East Asian precipitation.All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal−Northeastern China(Baikal−NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5),a mechanism to understand how the MAMJ BSIC influences the JJA Baikal−NEC rainfall is suggested.More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP)anomaly over the North Atlantic during MAMJ.The high SLP anomaly,associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST)anomalies in a zonal dipole-pattern in the North Atlantic during summer.The dipole SST anomaly drives a zonally orientated wave train,which causes a high anomaly geopotential height at 500 hPa over the Sea of Japan.As a result,the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal−NEC.This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal−NEC,positively influences the increased rainfall in summer. 展开更多
关键词 Bering Sea ice North Atlantic SST east asian summer precipitation wave train
下载PDF
THE RELATIONSHIP OF THE PRECEDING WINTER MJO ACTIVITIES AND THE SUMMER PRECIPITATION IN YANGTZE-HUAIHE RIVER BASIN OF CHINA 被引量:4
4
作者 李汀 琚建华 甘薇薇 《Journal of Tropical Meteorology》 SCIE 2012年第1期32-44,共13页
The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO streng... The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases. 展开更多
关键词 winter MJO summer precipitation in the basin ITCZ east Asia wave train east asian summer monsoon
下载PDF
The Enhancement of the East Asian Summer Monsoon over Northeast Asia over the Most Recent Two Decades
5
作者 Song JIANG Shuangmei MA +3 位作者 Congwen ZHU Boqi LIU Ting WANG Wanyi SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第12期2354-2366,I0002-I0004,共16页
The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning... The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning 1979-2022,our results show that the increased rainfall amounts are associated with a more pronounced Mongolian cyclone(MC)in July−August,a manifestation of a portion of the Eurasian barotropic Rossby wave train.Sea surface temperature(SST)anomalies in the North Atlantic(NA)regulate this wave train,with SST increases leading to its amplification.Somewhat independently,a delayed end to the rainy season in September is related to an enhanced anticyclone over the Kuril Islands(ACKI)in the Russian Far East.This anticyclone originates in the Arctic region,possibly induced by the loss of sea ice in the East Siberian Sea,a condition that can be detected two months in advance.The stronger MC and ACKI jointly contribute to the observed enhancement in the East Asian summer monsoon in NEA since 2000 by facilitating ascending motion and moisture transport.Therefore,the SST anomaly in the NA,which is responsible for the intensified rainfall in the rainy season in NEA,coupled with the sea ice conditions in the East Siberian Sea,provides a potential prediction source for the retreat of the rainy season. 展开更多
关键词 east asian summer monsoon rainfall over Northeast Asia North Atlantic SST sea ice loss in the east Siberian Sea
下载PDF
Interdecadal variability of summer precipitation in the Three River Source Region: Influences of SST and zonal shifts of the East Asian subtropical westerly jet 被引量:1
6
作者 Yumeng Liu Xianhong Meng +5 位作者 Lin Zhao S-Y.Simon Wang Lixia Zhang Zhaoguo Li Chan Wang Yingying An 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期47-53,共7页
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i... Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ. 展开更多
关键词 summer precipitation east asian subtropical westerly jet Three River Source Region Atlantic-Eurasian teleconnection
下载PDF
Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 ℃ global warming target 被引量:7
7
作者 WANG Tao MIAO Jia-Peng +1 位作者 SUN Jian-Qi FU Yuan-Hai 《Advances in Climate Change Research》 SCIE CSCD 2018年第2期102-111,共10页
In this study, the East Asian summer climate changes under the 1.5 ℃ global warming (1.5 GW) target in 30 simulations derived from 15 coupled models within the Coupled Model Intercomparison Program phase 5 (CMIP5... In this study, the East Asian summer climate changes under the 1.5 ℃ global warming (1.5 GW) target in 30 simulations derived from 15 coupled models within the Coupled Model Intercomparison Program phase 5 (CMIP5) are examined. Compared with the current summer climate (1975-2005), both surface air temperature and precipitation increase significantly over the East Asian continent during the 1.5 GW period (average period 2021-2051). In northeastern China this is particularly pronounced with regional averaged precipitation increases of more than 7.2%, which is greater than that for the whole East Asian continent (approximately 4.2%). Due to stronger enhancement of precipitation north of 40°N, the leading empirical orthogonal function (EOF) mode of summer precipitation over the East Asian continent changes from tripolar-like mode to dipole mode. As there is stronger surface warming over the East Asian continent than that over surrounding ocean, the land-sea thermal contrast is enhanced during the 1.5 GW period. As a result, the monsoon circulation in the lower troposphere is significantly strengthened, which causes the increased summer precipitation over the East Asian continent. In addition, larger interannual variabilities of East Asian summer monsoon circulation and associated precipitation are also suggested for the 1.5 GW period. 展开更多
关键词 east asian summer monsoon precipitation 1.5 global warming target CMIP5
下载PDF
Seasonal and Intraseasonal Variations of East Asian Summer Monsoon Precipitation Simulated by a Regional Air-Sea Coupled Model 被引量:5
8
作者 FANG Yongjie ZHANG Yaocun +1 位作者 HUANG Anning LI Bo 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第2期315-329,共15页
The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations... The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling. 展开更多
关键词 regional air sea coupled model east asian summer monsoon rainfall climatological intrasea-sonal oscillation
下载PDF
Mechanism of Regional Subseasonal Precipitation in the Strongest and Weakest East Asian Summer Monsoon Subseasonal Variation Years 被引量:2
9
作者 HU Haibo DENG Yuheng +1 位作者 FANG Jiabei WANG Rongrong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1411-1427,共17页
Using the National Center for Environment Prediction Climate Forecast System Reanalysis coupled dataset during 1979–2010,we selected four subseasonal indexes from the 16 East Asian Summer Monsoon(EASM)indexes to char... Using the National Center for Environment Prediction Climate Forecast System Reanalysis coupled dataset during 1979–2010,we selected four subseasonal indexes from the 16 East Asian Summer Monsoon(EASM)indexes to characterize the subseasonal variability of the entire EASM system.The strongest(1996)and weakest(1998)years of the subseasonal variation were revealed based on these subseasonal EASM indexes.Furthermore,three rainfall concentration areas were defined in East Asia,and these areas were dissected by the atmospheric midlatitude jet stream axis and the position of the Western North Pacific Subtropical High(WNPSH).Then,the subseasonal effects of the WNPSH,the South Asian High(SAH),the Mongolian Cyclone(MC),and the Boreal Summer Intraseasonal Oscillation(BSISO)on each rainfall concentration area were studied in the strongest and weakest subseasonal variation years of the EASM.During the summer of 1998,the WNPSH and the SAH were stable in the more southern region,which not only blocked the northward progression of the BSISO but also caused the MC to advance southward.Therefore,the summer of 1998 was the weakest subseasonal variability of the EASM,but with significant subseasonal precipitation episodes in the northern and central rainfall areas.However,in 1996,the BSISO repeatedly spread northward in the south rainfall area because of the weak intensities and northern positions of the WNPSH and the SAH,which caused significant subseasonal precipitation episodes.In addition,MC was blocked to the north of approximately 42°N with a weak subseasonal rainfall. 展开更多
关键词 east asian summer monsoon Subseasonal Western North Pacific Subtropical High Mongolian Cyclone Boreal summer Intraseasonal Oscillation
下载PDF
Interdecadal Variability of East Asian Summer Monsoon Precipitation over 220 Years (1777-1997)
10
作者 Chun-Ji KIM 钱维宏 +1 位作者 Hyun-Suk KANG Dong-Kyou LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第2期253-264,共12页
In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon p... In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean. 展开更多
关键词 interdecadal variability east asian summer monsoon precipitation TIMESCALES dry–wet transition
下载PDF
Anti-Phase Relationship Between the East Asian Winter Monsoon and Summer Monsoon During the Holocene? 被引量:2
11
作者 GE Qian XUE Zuo +2 位作者 YAO Zhigang ZANG Zhengchen CHU Fengyou 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第2期175-183,共9页
The relationship between the East Asian winter monsoon(EAWM) and East Asian summer monsoon(EASM) during the Holocene is complicated and remains controversial.In this study,analysis of grain size and benthic foraminife... The relationship between the East Asian winter monsoon(EAWM) and East Asian summer monsoon(EASM) during the Holocene is complicated and remains controversial.In this study,analysis of grain size and benthic foraminiferal oxygen isotope,as well as accelerator mass spectrometry ^(14)C dating was performed on a sediment core retrieved from the newly revealed muddy deposit on the northern South China Sea continental shelf.The history of the EAWM and EASM were reconstructed for the last 8200 a BP.Further analysis in conjunction with previously published paleo-climate proxies revealed that the relationship between the EAWM and EASM during the Holocene is more complex than a simple and strict anti-phase one-both negative and positive correlations were identified.The EAWM and EASM are negatively correlated around 7500,4800,4200,3200,and 300 a BP(cooling periods),while positively correlated around 7100,3700,and 2100 a BP(warm periods).In particular,both the EAWM and EASM intensified during the three positive correlation periods.However,we also found that the relationship between these two sub-monsoons is anti-phase during the final phase of particularly hot periods like Holocene Optimum and Medieval warm period.The possible impact from variations of solar irradiance on the relationship between the EAWM and EASM was also discussed. 展开更多
关键词 grain size oxygen isotope South China Sea east asian winter monsoon east asian summer monsoon HOLOCENE
下载PDF
Interannual variation of East Asian summer monsoon and its impacts on general circulation and precipitation 被引量:3
12
作者 于淑秋 施晓晖 林学椿 《Journal of Geographical Sciences》 SCIE CSCD 2009年第1期67-80,共14页
Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-... Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-August from 1951 to 2006, and focusing on the East Asia-West Pacific region (10°-80°N, 70°-180°E), interannual variation of East Asian summer monsoon (EASM) and its correlations with general circulation and precipitation patterns are studied by using statistical diagnostic methods such as 9-point high pass filtering, empirical orthogonal function (EOF) analysis, composite analysis and other statistical diagnosis, etc. It is concluded as follows: (1) EOF analysis of SLP in the East Asia-West Pacific region shows the existence of the zonal dipole oscillation mode (APD) between the Mongolia depression and the West Pacific high, and APD index can be used as an intensity index of EASM. (2) EOF analysis of GHT anomalies at 500 hPa in the East Asia-West Pacific region shows that the first EOF mode is characterized with an obvious meridional East Asian pattern (EAP), and EAP index can also be used as an EASM intensity index. (3) The composite analysis of high/low APD index years reveals the close correlation of APD index with EAP at 500 hPa (or 850 hPa). The study shows an obvious opposite correlation exists between APD index and EAP index with a correlation coefficient of -0.23, which passes the confidence test at 0.10 level. (4) Both APD and EAP indexes are closely correlated with precipitation during flood-prone season in China and precipitation rate over the East Asia-West Pacific region. The significant correlation area at 5% confidence level is mainly located from the southern area of the Yangtze River valley to the ocean around southern Japan, and the former is a positive correlation and the latter is a negative one. 展开更多
关键词 summer monsoon east Asia-West Pacific dipole east asian Pattern precipitation
下载PDF
An Index Measuring the Interannual Variation of the East Asian Summer Monsoon-The EAP Index 被引量:76
13
作者 黄刚 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期41-52,共12页
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is... Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon. 展开更多
关键词 east Asia/Pacific index east asian summer monsoon interannual variability
下载PDF
The Instability of the East Asian Summer Monsoon-ENSO Relations 被引量:29
14
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第1期1-11,共11页
The instability in the relation between the East Asian summer monsoon and the ENSO cycle in the long-term variation is found through this research. By instability, we mean that high inter-relation exists in some perio... The instability in the relation between the East Asian summer monsoon and the ENSO cycle in the long-term variation is found through this research. By instability, we mean that high inter-relation exists in some periods but low inter-relation may appear in some other periods. It is reveals that the interannual variation of the summer atmospheric circulation during the ' high correlation' periods (HCP) is significantly different from that during the ' low correlation' periods (LCP). Larger interannual variability is found during HCP for trade wind over the tropical eastern Pacific of the Southern Hemisphere, the low-level air temperature over the tropical Pacific, the subtropical high pressure systems in the two hemispheres, and so on. The correlation between summer rainfall over China and ENSO is as well different between HCP and LCP. 展开更多
关键词 INSTABILITY The east asian summer monsoon ENSO
下载PDF
Interdecadal Variability of the East Asian Summer Monsoon and Associated Atmospheric Circulations 被引量:14
15
作者 曾刚 孙照渤 +1 位作者 Wei-Chyung WANG 闵锦忠 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期915-926,共12页
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) ... Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions. 展开更多
关键词 east asian summer monsoon interdecadal variability Walker circulation east asian Hadley circulation
下载PDF
Interdecadal Variability of the East Asian Summer Monsoon in an AGCM 被引量:15
16
作者 韩晋平 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期808-818,共11页
It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surfac... It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surface temperature (SST) and sea ice concentration distribution is investigated with an atmospheric general circulation model (AGCM). The model is forced with observed monthly global SST and sea ice evolution through 1958-1999. A total of four integrations starting from different initial conditions are carried out. It is found that only one of these reproduces the observed interdecadal changes of the EASM after the 1970s, including weakened low-level meridional wind, decreased surface air temperature and increased sea level pressure in central China, as well as the southwestward shift of the western Pacific subtropical high ridge and the strengthened 200-hPa westerlies. This discrepancy among these simulated results suggests that the interdecadal variation of the EASM cannot be accounted for by historical global SST and sea ice evolution. Thus, the possibility that the interdecadal timescale change of monsoon is a natural variability of the coupled climate system evolution cannot be excluded. 展开更多
关键词 global sea surface temperature sea ice east asian summer monsoon interdecadal change
下载PDF
Regional-scale Surface Air Temperature and East Asian Summer Monsoon Changes during the Last Millennium Simulated by the FGOALS-gl Climate System Model 被引量:12
17
作者 MAN Wenmin ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期765-778,共14页
The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution vers... The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation. 展开更多
关键词 last millennium surface air temperature spatial patterns regional-scale variation east asian summer monsoon
下载PDF
Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon 被引量:17
18
作者 Zhiyan ZUO Renhe ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第2期151-163,共13页
The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations (March-September) using the NCEP GCM coupled with the Simplified Sim... The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations (March-September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model (NCEP GCM/SSiB). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China (YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land-sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region. In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSiB. 展开更多
关键词 soil moisture east asian summer monsoon eastern China
下载PDF
Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases 被引量:11
19
作者 FENG Juan CHEN Wen 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期344-354,共11页
The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EAS... The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EASM) relationship in the decaying stages of ENSO is investigated in the present study.To achieve this,ENSO is divided into four groups based on the EAWMres:(1) weak EAWMres-E1Ni(n)o (WEAWMres-EN); (2) strong EAWMres-E1Ni(n)o (SEAWMresEN); (3) weak EAWMres-La Ni(n)a (WEAWMres-LN); (4) strong EAWMres-La Ni(n)a (SEAWMres-LN).Composite results demonstrate that the EAWMres may enhance the atmospheric responses over East Asia to ENSO for WEAWMres-EN and SEAWMres-LN.The corresponding low-level anticyclonic (cyclonic) anomalies over the western North Pacific (WNP) associated with El Ni(n)o (La Ni(n)a) tend to be strong.Importantly,this feature may persist into the following summer,causing abundant rainfall in northern China for WEAWMres-EN cases and in southwestern China for SEAWMres-LN cases.In contrast,for the SEAWMres-EN and WEAWMres-LN groups,the EAWMres tends to weaken the atmospheric circulation anomalies associated with E1 Ni(n)o or La Ni(n)a.In these cases,the anomalous WNP anticyclone or cyclone tend to be reduced and confined to lower latitudes,which results in deficient summer rainfall in northern China for SEAWMres-EN and in southwestern China for WEAWMres-LN.Further study suggests that anomalous EAWMres may have an effect on the extra-tropical sea surface temperature anomaly,which persists into the ensuing summer and may interfere with the influences of ENSO. 展开更多
关键词 east asian winter monsoon ENSO east asian summer monsoon
下载PDF
Interannual to Interdecadal Variation of East Asian Summer Monsoon and its Association with the Global Atmospheric Circulation and Sea Surface Temperature 被引量:11
20
作者 薛峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期567-575,共9页
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it rea... The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period. 展开更多
关键词 east asian summer monsoon Inerannual to interdecadal variation The global atmospheric circulation Sea surface temperature
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部