Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced...The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.展开更多
The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupl...The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific(WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid–upper tropospheric temperature in the midlatitudes, with a southwest–northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core.展开更多
Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been...Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes.展开更多
The East Asian westerly jet(EAJ)plays a crucial role in affecting the East Asian summer rainfall(EASR).Therefore,evaluations of EAJ simulations are vital for improving the understanding and projections of climate chan...The East Asian westerly jet(EAJ)plays a crucial role in affecting the East Asian summer rainfall(EASR).Therefore,evaluations of EAJ simulations are vital for improving the understanding and projections of climate change in East Asia.This study evaluates the simulations of the climatology and interannual variability in the present-day summer EAJ in the CMIP6 models and compares the results with those in the CMIP5 models by analyzing the historical climate simulations of 29 CMIP5 models and 21 CMIP6 models during the period from 1986–2005.In general,the CMIP6 models capture the EAJ more realistically than the CMIP5 models.The results show that the CMIP6 models reasonably capture the spatial features of the climatological zonal wind at 200 hPa and simulate a smaller zonal wind bias along the EAJ.The locations of the EAJ’s core are at the observed location in nearly all CMIP6 models but in only approximately two-thirds of the CMIP5 models.The EAJ’s intensity is closer to the observed value and exhibits a smaller intermodel dispersion in the CMIP6 models.The CMIP6 models also show an improved ability to reproduce the interannual variability in the EAJ’s meridional displacement and have a stronger relationship with the EASR.展开更多
Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon ...Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.展开更多
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impa...A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.展开更多
Atmospheric rivers(ARs)are long,narrow,and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation.To investigate the relationship between ARs and mei-yu rainfall in China...Atmospheric rivers(ARs)are long,narrow,and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation.To investigate the relationship between ARs and mei-yu rainfall in China,the mei-yu season of 2020 in the Yangtze-Huaihe River basin is taken as an example.An adjusted AR-detection algorithm is applied on integrated water vapor transport(IVT)of the ERA5 reanalysis.The JRA-55 reanalysis and the data from Integrated Multi-satellite Retrievals for GPM(IMERG)are also utilized to study the impacts of ARs on mei-yu rainfall in 2020.The results reveal that ARs in East Asia have an average length of 5400 km,a width of 600 km,a length/width ratio of 9.3,and a northeastward orientation of 30°.ARs are modulated by the western North Pacific subtropical high.The IVT core is located at the south side of low pressure systems,moving eastward with a speed of 10°d−1.For the cross sections of ARs in the Yangtze-Huaihe River basin,75%of the total flux is concentrated below 4 km with low-level jets near AR cores.Moreover,ARs occur mainly in the mei-yu period with a frequency of 20%–60%.The intensity of AR-related precipitation is 6–12 times that of AR-unrelated precipitation,and AR-related precipitation contributes about 50%–80%to total mei-yu precipitation.As shown in this case study of summer 2020,ARs are an essential part of the mei-yu system and have great impacts on mei-yu rainfall.Thus,ARs should receive more attention in research and weather forecast practices.展开更多
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an N...The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.展开更多
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
基金supported by the National Natural Science Foundation of China (Grant No. 40905025)GYHY201006019, and GYHY200906017
文摘The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.
基金supported by the National Natural Science Foundation of China (Grant No. 41775062)the Youth Innovation Promotion Association (Grant No. CAS 2017105)+1 种基金supported by the National Key R&D Program of China (Grant No. 2017YFA0603802)the National Natural Science Foundation of China (Grant No. 41675084)
文摘The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific(WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid–upper tropospheric temperature in the midlatitudes, with a southwest–northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073 and U1133603)
文摘Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes.
基金supported by the National Key R&D Program of China grant number 2017YFA0603802the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA2006040102National Natural Science Foundation of China grant number 41675084。
文摘The East Asian westerly jet(EAJ)plays a crucial role in affecting the East Asian summer rainfall(EASR).Therefore,evaluations of EAJ simulations are vital for improving the understanding and projections of climate change in East Asia.This study evaluates the simulations of the climatology and interannual variability in the present-day summer EAJ in the CMIP6 models and compares the results with those in the CMIP5 models by analyzing the historical climate simulations of 29 CMIP5 models and 21 CMIP6 models during the period from 1986–2005.In general,the CMIP6 models capture the EAJ more realistically than the CMIP5 models.The results show that the CMIP6 models reasonably capture the spatial features of the climatological zonal wind at 200 hPa and simulate a smaller zonal wind bias along the EAJ.The locations of the EAJ’s core are at the observed location in nearly all CMIP6 models but in only approximately two-thirds of the CMIP5 models.The EAJ’s intensity is closer to the observed value and exhibits a smaller intermodel dispersion in the CMIP6 models.The CMIP6 models also show an improved ability to reproduce the interannual variability in the EAJ’s meridional displacement and have a stronger relationship with the EASR.
基金supported by the National Natural Science Foundation of China[grant numbers 42175066,41875087,42030601,and 42105017]the Shanghai Municipal Natural Science Fund[grant number 20ZR1407400]the Shanghai Pujiang Program[grant number 20PJ1401600]。
文摘Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.
基金supported by the Strategic Priority Research Program(Grant No.XDA05110203) of the Chinese Academy of Sciencesthe Research Council of Norway through the India-Clim projectthe National Basic Research Program of China(Grant Nos.2012CB955401 and 2010CB951802)
文摘A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.
基金This research was supported jointly by the National Key Research and Development Program(Grant No.2016YFA0600604)the National Natural Science Foundation of China(Grant No.4191101005 and 4181101164)the Alliance of the International Science Organizations(Grant No.ANSO-CR-KP-2020-01).
文摘Atmospheric rivers(ARs)are long,narrow,and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation.To investigate the relationship between ARs and mei-yu rainfall in China,the mei-yu season of 2020 in the Yangtze-Huaihe River basin is taken as an example.An adjusted AR-detection algorithm is applied on integrated water vapor transport(IVT)of the ERA5 reanalysis.The JRA-55 reanalysis and the data from Integrated Multi-satellite Retrievals for GPM(IMERG)are also utilized to study the impacts of ARs on mei-yu rainfall in 2020.The results reveal that ARs in East Asia have an average length of 5400 km,a width of 600 km,a length/width ratio of 9.3,and a northeastward orientation of 30°.ARs are modulated by the western North Pacific subtropical high.The IVT core is located at the south side of low pressure systems,moving eastward with a speed of 10°d−1.For the cross sections of ARs in the Yangtze-Huaihe River basin,75%of the total flux is concentrated below 4 km with low-level jets near AR cores.Moreover,ARs occur mainly in the mei-yu period with a frequency of 20%–60%.The intensity of AR-related precipitation is 6–12 times that of AR-unrelated precipitation,and AR-related precipitation contributes about 50%–80%to total mei-yu precipitation.As shown in this case study of summer 2020,ARs are an essential part of the mei-yu system and have great impacts on mei-yu rainfall.Thus,ARs should receive more attention in research and weather forecast practices.
基金supported by the National Basic Research Program of China(Grant No.2009CB421406)the special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY200906018)+1 种基金the National Nature Science Foundation of China(Grant No.41175071)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN202)
文摘The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.