The Yithi submarine canyons, composed of four canyons less than 60 km in length, are located on the narrowest part of the East China Sea (ECS) slope. They extend from the shelf break at 160 m down to water depth of ...The Yithi submarine canyons, composed of four canyons less than 60 km in length, are located on the narrowest part of the East China Sea (ECS) slope. They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient (along the canyon axis) of 3°(〈1 000 m) and 0.7°(〈1 000 m). The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough. Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope. The whole canyon system consists of three parts: the canyon, the channel and the fan. Slumps and slides often develop in the upper part of canyon where the water depth is less than 1 000 m, and the turbidities usually developed on the fan. The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons. Canyon-fans are often associated with small angle progradational reflection. Most canyon-fans and levees were transversely cut by active normal faults with NEE- SWW trending that are coupled to the modern extension of the Okinawa Trough. According to the age of formation of canyon-fans and sediments incised by canyons, we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.展开更多
The westem slope of the Okinawa trough has been considered to experience important methane seep activities. Abundant terrigenous sediments supply and widely developed normal faults make this area an ideal place for me...The westem slope of the Okinawa trough has been considered to experience important methane seep activities. Abundant terrigenous sediments supply and widely developed normal faults make this area an ideal place for methane production, methane fluids migration and associated anaerobic oxidation of methane.展开更多
Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mu...Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.展开更多
The distribution and chemical properties of colored dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea during December 2011-January 2012 were investigated. The input of freshwater and biological a...The distribution and chemical properties of colored dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea during December 2011-January 2012 were investigated. The input of freshwater and biological activities had an evident influence on the CDOM levels(characterized by the light absorption coefficient at the wavelength of 355 nm a_(355)) in the study area. The spatial distribution of CDOM levels displayed a gradually decreasing trend from the coastal waters(0.37 m^(-1)) to the open sea(0.18 m^(-1)). The spectral slope ratio(the slope ratio S_R defined as S_(275-295):S_(350-400)) during the cruise was correlated with salinity, and exhibited a large variation from inshore(average of 2.515) to offshore sites(average of 5.327) compared with the distribution of a_(355). The values of S_R were related to CDOM molecular weight(MW). The a_(355), S_R, and chlorophyll a in 37 samples collected from the surface microlayer were significantly correlated with those in the corresponding subsurface water samples, implying a strong exchange action between the microlayer and bulk water. The a_(355) and S_R of CDOM exhibited significant microlayer enrichment, with mean enrichment factors(EFs) of 1.72 and 1.62, respectively.展开更多
基金The National Natural Science Foundation of China under contract Nos 40576033 and 40406013the Marine Science Foundation of State Oceanic Administration under contract No.2006306
文摘The Yithi submarine canyons, composed of four canyons less than 60 km in length, are located on the narrowest part of the East China Sea (ECS) slope. They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient (along the canyon axis) of 3°(〈1 000 m) and 0.7°(〈1 000 m). The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough. Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope. The whole canyon system consists of three parts: the canyon, the channel and the fan. Slumps and slides often develop in the upper part of canyon where the water depth is less than 1 000 m, and the turbidities usually developed on the fan. The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons. Canyon-fans are often associated with small angle progradational reflection. Most canyon-fans and levees were transversely cut by active normal faults with NEE- SWW trending that are coupled to the modern extension of the Okinawa Trough. According to the age of formation of canyon-fans and sediments incised by canyons, we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.
基金supported by the National Natural Science Foundation of China(grant No.41306062)the Key Laboratory of Gas Hydrate Foundation(grant No.SHW [2014]-DX-04)
文摘The westem slope of the Okinawa trough has been considered to experience important methane seep activities. Abundant terrigenous sediments supply and widely developed normal faults make this area an ideal place for methane production, methane fluids migration and associated anaerobic oxidation of methane.
基金supported by the National Natural Science Foundation of China (Nos. 41806073, 41530963)the Natural Science Foundation of Shandong Province (No. ZR 2017BD014)+1 种基金the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology (No. DMSM 2017042)the Fundamental Research Funds for the Central Universities (Nos. 201964016, 201851023)
文摘Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFA0601304)the National Natural Science Foundation for Creative Research Groups (No. 41521064)+2 种基金the National Natural Science Foundation of China (No. 41320104008)the AoShan Talents Program of Qingdao National Laboratory for Marine Science and Technology (No. 2015ASTP)the Fundamental Research Funds for the Central Universities
文摘The distribution and chemical properties of colored dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea during December 2011-January 2012 were investigated. The input of freshwater and biological activities had an evident influence on the CDOM levels(characterized by the light absorption coefficient at the wavelength of 355 nm a_(355)) in the study area. The spatial distribution of CDOM levels displayed a gradually decreasing trend from the coastal waters(0.37 m^(-1)) to the open sea(0.18 m^(-1)). The spectral slope ratio(the slope ratio S_R defined as S_(275-295):S_(350-400)) during the cruise was correlated with salinity, and exhibited a large variation from inshore(average of 2.515) to offshore sites(average of 5.327) compared with the distribution of a_(355). The values of S_R were related to CDOM molecular weight(MW). The a_(355), S_R, and chlorophyll a in 37 samples collected from the surface microlayer were significantly correlated with those in the corresponding subsurface water samples, implying a strong exchange action between the microlayer and bulk water. The a_(355) and S_R of CDOM exhibited significant microlayer enrichment, with mean enrichment factors(EFs) of 1.72 and 1.62, respectively.