The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cr...The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cratons.However,there remains controversy over the destruction pattern(e.g.,Zhu et al.,2017).During the Early Mesozoic,crustal thickening occurred in the Xuhuai and Qinling orogens,followed by lithospheric delamination leading to crustal thinning(Chen et al.,2023).The middle and upper crustal thinning in the Yanshan and Taihang uplifts was induced by mafic magma underplating(Ji et al.,2009).展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
Based on the available original dust storm records from 60 meteorological stations, we discussed the identification standard of severe dust storms at a single station and constructed a quite complete time series of se...Based on the available original dust storm records from 60 meteorological stations, we discussed the identification standard of severe dust storms at a single station and constructed a quite complete time series of severe group dust storms in the eastern part of Northwest China in 1954–2001. The result shows that there were 99 severe group dust storms in this region in recent 48 years. The spatial distribution indicates that the Alax Plateau, most parts of the Ordos Plateau and most parts of the Hexi Corridor are the main areas influenced by severe group dust storms. In addition, the season and the month with the most frequent severe group dust storms are spring and April, accounting for 78.8% and 41.4% of the total events respectively. During the past 48 years the lowest rate of severe group dust storms occurred in the 1990s. Compared with the other 4 decades, on the average, the duration and the affected area of severe group dust storms are relatively short and small during the 1990s. In 2000 and 2001, there were separately 4 severe group dust storms as the higher value after 1983 in the eastern part of Northwest China.展开更多
Extremely heavy rainfall occurred over both Northwest India and North China in September 2021.The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions,respectively,and bro...Extremely heavy rainfall occurred over both Northwest India and North China in September 2021.The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions,respectively,and broke the record since the observational data were available,i.e.,1901 for India and 1951 for China.In this month,the Asian uppertropospheric westerly jet was greatly displaced poleward over West Asia,and correspondingly,an anomalous cyclone appeared over India.The anomalous cyclone transported abundant water vapor into Northwest India,leading to the heavy rainfall there.In addition,the Silk Road pattern,a teleconnection pattern of upper-level meridional wind over the Eurasian continent and fueled by the heavy rainfall in Northwest India,contributed to the heavy rainfall in North China.Our study emphasizes the roles of atmospheric teleconnection patterns in concurrent rainfall extremes in the two regions far away from each other,and the occurrence of rainfall extremes during the post-or pre-monsoon period in the northern margins of monsoon regions.展开更多
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the ...A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at^139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.展开更多
It is well known that there are widespread igneous events at;100 Ma in the Eastern North China Craton;however,their tectonic environments are controversial.They were thought to be either related to an intra-continenta...It is well known that there are widespread igneous events at;100 Ma in the Eastern North China Craton;however,their tectonic environments are controversial.They were thought to be either related to an intra-continental rifting or展开更多
The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane(SLT) of the eastern North China Craton(NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as...The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane(SLT) of the eastern North China Craton(NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt(Group#1),basaltic andesite(Group#2),dacite(Group#3) and rhyodacite(Group#4).LA-ICP-MS zircon U-Th-Pb dating reveals that they formed at ~2.53-2.51 Ga.Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element(REE) patterns with low(La/Yb)_N ratios and a narrow range of(Hf/Sm)N ratios,and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids.Compared to Group#1 samples,Group#2 samples display strongly fractionated REE patterns with higher(La/Yb)_N ratios and more scattered(Hf/Sm)N ratios,indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids.Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns,which resemble typical high-Si adakites,and the magmatic precursors were derived from partial melting of a subducted oceanic slab.Group#4 samples have the highest SiO_2 and the lowest MgO and transition trace element contents,and were derived from partial melting of basaltic rocks at lower crust levels.Integrating these tholeiitic to calcalkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses,the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin.Furthermore,the affinities in lithological assemblages,metamorphism and tectonic regime among SLT,eastern Hebei to western Liaoning Terrane(EH-WLT),northern Liaoning to southern Jilin Terrane(NL-SJT),AnshanBenxi continental nucleus(ABN) and Yishui complex(YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.展开更多
The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to c...The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to characterize crustal thicknesses.However,sometimes confusing results are obtained since there is no enough filtered data.Here,a state-of-the-art approach,based on a machine-learning algorithm,is proposed to predict crustal thickness using global major-and trace-element geochemical data of intermediate arc rocks and intraplate basalts,and their corresponding crustal thicknesses.After the validation processes,the root-mean-square error(RMSE)and the coefficient of determination(R2)score were used to evaluate the performance of the machine learning algorithm based on the learning dataset which has never been used during the training phase.The results demonstrate that the machine learning algorithm is more reliable in predicting crustal thickness than the conventional methods.The trained model predicts that the crustal thickness of the eastern North China Craton(ENCC)was-45 km from the Late Triassic to the Early Cretaceous,but-35 km from the Early Cretaceous,which corresponds to the paleo-elevation of 3.0±1.5 km at Early Mesozoic,and decease to the present-day elevation in the ENCC.The estimates are generally consistent with the previous studies on xenoliths from the lower crust and on the paleoenvironment of the coastal mountain of the ENCC,which indicates that the lower crust of the ENCC was delaminated abruptly at the Early Cretaceous.展开更多
Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures ...Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.展开更多
Based on the spatial distribution of ancient rocks and zircons, three ancient terranes older than ca. 2.6 Ga have recently been identified in the North China Craton, namely the Eastern, Southern, and Central Ancient T...Based on the spatial distribution of ancient rocks and zircons, three ancient terranes older than ca. 2.6 Ga have recently been identified in the North China Craton, namely the Eastern, Southern, and Central Ancient Terranes. The Eastern Ancient Terrane is the best studied and understood of the three ancient terranes. It has a long geological history back to ca. 3.8 Ga ago and includes the areas of Anshan-Benxi, eastern Hebei, eastern Shandong and western Shandong. In Anshan-Benxi, several different types of 3.8 Ga rocks were discovered together with 3.1-3.7 Ga rocks, whereas 2.9-3.0 Ga K-rich granites and 2.5 Ga syenogranite occur on larger scales. In eastern Hebei, 3.0-3.4 Ga rocks and older detrital and xenocrystic zircons were identified. In eastern Shandong, there are a large volumes of 2.7 Ga and 2.9 Ga rocks. In western Shandong, early Neoarchean (2.6-2.7 Ga) intrusive and supracrustal rocks are widely distributed. Whole-rock Nd and zircon Hf isotope data suggest that both mantle additions and crustal recycling played important roles within the Eastern Ancient Terrane during almost every tectono-magmatic event. Most BIFs in the North China Craton are late Neoarchean in age and are distributed on continental crust along the western margin of the Eastern Ancient Terrane, probably suggesting that a stable environment was one of the key factors for the formation of large-scale BIFs.展开更多
The timing and mechanisms of lithospheric thinning and destruction of the North China Craton(NCC)remain controversial,and the overall geodynamics of the process are poorly understood.This paper documents Late Triassic...The timing and mechanisms of lithospheric thinning and destruction of the North China Craton(NCC)remain controversial,and the overall geodynamics of the process are poorly understood.This paper documents Late Triassic igneous rocks including monzogranite,gabbro,and diorite from the Xiuyan District on the Liaodong Peninsula in the eastern NCC,which have LA-ICP-MS zircon U-Pb ages of 229.0±0.4 Ma,216.2±0.9 Ma,and 210.6±2.0 Ma,respectively.Monzogranite shows high-SiO_(2) adakite affinity,negative ε_(Hf)(t)values(-20.6 to-17.9),and old T_(DM2) ages(3.53-3.29 Ga),suggesting that their parental magma was derived from thickened Paleoarchean mafic lower crust and minor mantle materials that were also involved their generation.Gabbro is ultrapotassic,strongly enriched in LREEs and LILEs,depleted in HFSEs,and has evolved zircon Hf isotopes with negative ε_(Hf) of -10.04 to-5.85 and old T_(DM2) ages(2.59-2.22 Ga).These are diagnostic signatures of a crustal component,but their high contents of Mg O,Cr,Co,Ni indicate that the primary magma originated from enriched mantle.Diorite is enriched in LILEs and LREEs,depleted in HFSEs(with negative Nb,Ta,and Ti anomalies),and contains negative ε_(Hf)(t)values(-13.64 to-11.01).Compared with the gabbro,the diorite is relatively enriched in Nb,Ta and HREEs,and also contains younger T_(DM2) ages(2.11-1.94 Ga),suggesting that the diorite was formed by mixing between ancient lower crust-derived felsic magmas and asthenospheric mantle-derived magmas.Field observations,geochronology,geochemistry,and zircon Lu-Hf isotopes indicate that Late Triassic magmatism and tectonic activity resulted from deep subduction of the Yangtze Craton beneath the NCC in the Xiuyan area.This phase of tectonic activity was completed in the eastern NCC by the Late Triassic(216 Ma),and was subsequently followed by lithospheric thinning that began in the Late Triassic.展开更多
During the past decade,generations of Precambrian mafic dykes/sills have been investigated and revealed in the North China Craton(NCC).Researchers identified more than 20 episodes of Precambrian dyke swarms,
In the eastern part of China there had occurred large\|scale gold mineralization during the Mesozoic, resulting in a large number of important gold ore\|concentrated areas. In this paper we have selected some isotope ...In the eastern part of China there had occurred large\|scale gold mineralization during the Mesozoic, resulting in a large number of important gold ore\|concentrated areas. In this paper we have selected some isotope data (including four gold deposits previously studied and two gold deposits in this work) of Au\|bearing quartz veins of the representative gold deposits in six important gold ore\|concentrated areas in the periphery of the North China Platform and calculated their metallogenic ages using the method of Ludwig (2.90 version). The results show that the representative gold deposits in the six gold ore\|concentrated areas were formed during the Mesozoic.展开更多
Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechani...Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechanism consistent with the major seasonal occurrence period of extreme heat events in North China(NCSH).Observational analyses show significant decadal variability in NCSH for 1981–2021,potentially linked to the Indo-Pacific warm pool and Northwest Pacific Ocean dipole(IPOD)in early-to-mid summer.Dynamic diagnostic analysis and the linear baroclinic model(LBM)show that the positive IPOD in early-to-mid summer can excite upward vertical wind anomalies in the South China-East China Sea region,shifting the position of the western Pacific subtropical high(WPSH)to the east or weakening the degree of its control of the South China-East China Sea region,thus generating a positive geopotential height quadrupole(EAWPQ)pattern in the East Asia-Northwest Pacific region.Subsequently,the EAWPQ can cause air compression(expansion)over North China by regulating the tropospheric thickness anomalies in North China,thus increasing(decreasing)NCSH.Finally,an empirical model that incorporates the linear trend can better simulate the decadal NCSH compared to an empirical model based solely on the IPOD index,suggesting that the decadal variability of NCSH may be a combined contribution of the decadal IPOD and external linear forcing.展开更多
U-Pb zircon age, geochemical, and Sr-Nd-Pb isotopic data of mafic dykes from eastern Shandong Province, eastern China is reported herein. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb ...U-Pb zircon age, geochemical, and Sr-Nd-Pb isotopic data of mafic dykes from eastern Shandong Province, eastern China is reported herein. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses of two samples from the investigated mafic dykes yield consistent ages ranging from 121.9 Ma ± 0.47 Ma to 122.9 Ma ± 0.61 Ma. The mafic dykes are characterized by high (87Sr/86Sr) i ranging from 0.7087 to 0.7089, low εNd(t) values ranging from -16.9 to -17.8, 206Pb/204Pb = 17.15 to 17.17, 207Pb/204Pb = 15.45 to 15.47, and 208Pb/204Pb = 37.59 to 37.68. Results from the current study suggest that the mafic dykes are derived from partial melting of ancient lithospheric mantle that was variably hybridized by melts derived from foundered lower crustal eclogite. The mafic dykes may have been generated through subsequent insignificant crystal fractionation and very minor crustal contamination during magma ascent. Combined with previous studies, the current findings provide new evidence that the intense lithospheric thinning beneath the eastern Shandong Province of eastern China occurred at ~120 Ma, and that this condition was caused by the removal of the lower lithosphere (mantle and lower crust).展开更多
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced...The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.展开更多
North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate an...North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction.展开更多
ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the...ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) anticyclonic anomaly in the lower troposphere leading to enhanced precipitation in the Yangtze River valley, and the other is related to the southward displacement of the Asian jet stream (AJS) in the upper troposphere resulting in suppressed precipitation in the Huaihe River-Yellow River valleys. This southward displacement of the AJS is one part of ENSO's effect on the zonal flow in the whole Northern Hemisphere. After the E1 Nifio peak, the ENSO-related warming in the tropical troposphere persists into the following early summer, increasing the meridional temperature gradient and through the thermal wind balance, leads to the enhancement of westerly flow in the subtropics south of the westerly jet stream and results in a southward displacement of the westerly jet stream.展开更多
The linkage between the Asian-Pacific oscillation (APO) and the precipitation over central eastern China in spring is preliminarily addressed by use of the observed data. Results show that they correlate very well, ...The linkage between the Asian-Pacific oscillation (APO) and the precipitation over central eastern China in spring is preliminarily addressed by use of the observed data. Results show that they correlate very well, with the positive (negative) phase of APO tending to increase (decrease) the precipitation over central eastern China. Such a relationship can be explained by the atmospheric circulation changes over Asia and the North Pacific in association with the anomalous APO. A positive phase of APO, characterized by a positive anomaly over Asia and a negative anomaly over the North Pacific in the upper-tropospheric temperature, corresponds to decreased low-level geopotential height (H) and increased high-level H over Asia, and these effects are concurrent with increased low-level H and decreased high-level H over the North Pacific. Meanwhile, an anticyclonic circulation anomaly in the upper troposphere and a cyclonic circulation anomaly in the lower troposphere are introduced in East Asia, and the low-level southerly wind is strengthened over central eastern China. These changes provide advantageous conditions for enhanced precipitation over central eastern China. The situation is reversed in the negative phase of APO, leading to reduced precipitation in this region.展开更多
基金granted by the National Key R&D Plan(Grant No.2022YFF0800702)project SINOPROBE on sub-project SINOPROBE-01,National Natural Science Foundation of China(Grants 41274003,41674101,and 41974112)。
文摘The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cratons.However,there remains controversy over the destruction pattern(e.g.,Zhu et al.,2017).During the Early Mesozoic,crustal thickening occurred in the Xuhuai and Qinling orogens,followed by lithospheric delamination leading to crustal thinning(Chen et al.,2023).The middle and upper crustal thinning in the Yanshan and Taihang uplifts was induced by mafic magma underplating(Ji et al.,2009).
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金The National Key Basic Research Project of China, No. G2000048703 The Knowledge Innovation Project of CAS, No. KZCX2-305 Key Research Project of NSMC, No.NSMC-Y0101
文摘Based on the available original dust storm records from 60 meteorological stations, we discussed the identification standard of severe dust storms at a single station and constructed a quite complete time series of severe group dust storms in the eastern part of Northwest China in 1954–2001. The result shows that there were 99 severe group dust storms in this region in recent 48 years. The spatial distribution indicates that the Alax Plateau, most parts of the Ordos Plateau and most parts of the Hexi Corridor are the main areas influenced by severe group dust storms. In addition, the season and the month with the most frequent severe group dust storms are spring and April, accounting for 78.8% and 41.4% of the total events respectively. During the past 48 years the lowest rate of severe group dust storms occurred in the 1990s. Compared with the other 4 decades, on the average, the duration and the affected area of severe group dust storms are relatively short and small during the 1990s. In 2000 and 2001, there were separately 4 severe group dust storms as the higher value after 1983 in the eastern part of Northwest China.
基金supported by the National Natural Science Foundation of China(Grant No.42105064)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)China Meteorological Administration program(Grant No.CXFZ2021J030)。
文摘Extremely heavy rainfall occurred over both Northwest India and North China in September 2021.The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions,respectively,and broke the record since the observational data were available,i.e.,1901 for India and 1951 for China.In this month,the Asian uppertropospheric westerly jet was greatly displaced poleward over West Asia,and correspondingly,an anomalous cyclone appeared over India.The anomalous cyclone transported abundant water vapor into Northwest India,leading to the heavy rainfall there.In addition,the Silk Road pattern,a teleconnection pattern of upper-level meridional wind over the Eurasian continent and fueled by the heavy rainfall in Northwest India,contributed to the heavy rainfall in North China.Our study emphasizes the roles of atmospheric teleconnection patterns in concurrent rainfall extremes in the two regions far away from each other,and the occurrence of rainfall extremes during the post-or pre-monsoon period in the northern margins of monsoon regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230311 and 41802077)the Fundamental Research Funds for the Central Universities(Grant No.53200759380)the China Postdoctoral Science Foundation(Grant No.2018M631538)。
文摘A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at^139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.
基金supported by 973 (2012CB416601) and NFSC (41322018) projects
文摘It is well known that there are widespread igneous events at;100 Ma in the Eastern North China Craton;however,their tectonic environments are controversial.They were thought to be either related to an intra-continental rifting or
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41530207 and 41772188)。
文摘The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane(SLT) of the eastern North China Craton(NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt(Group#1),basaltic andesite(Group#2),dacite(Group#3) and rhyodacite(Group#4).LA-ICP-MS zircon U-Th-Pb dating reveals that they formed at ~2.53-2.51 Ga.Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element(REE) patterns with low(La/Yb)_N ratios and a narrow range of(Hf/Sm)N ratios,and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids.Compared to Group#1 samples,Group#2 samples display strongly fractionated REE patterns with higher(La/Yb)_N ratios and more scattered(Hf/Sm)N ratios,indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids.Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns,which resemble typical high-Si adakites,and the magmatic precursors were derived from partial melting of a subducted oceanic slab.Group#4 samples have the highest SiO_2 and the lowest MgO and transition trace element contents,and were derived from partial melting of basaltic rocks at lower crust levels.Integrating these tholeiitic to calcalkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses,the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin.Furthermore,the affinities in lithological assemblages,metamorphism and tectonic regime among SLT,eastern Hebei to western Liaoning Terrane(EH-WLT),northern Liaoning to southern Jilin Terrane(NL-SJT),AnshanBenxi continental nucleus(ABN) and Yishui complex(YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.
基金co-funded by the National Natural Science Foundation of China(Grant Nos.42002089,41930428)the National Key R&D Program of China(Grant Nos.2016YFC0600401 and 2017YFC0602302)+1 种基金by Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University)Ministry of Education(Grant Nos.2020YSJS02,2020YSJS01).
文摘The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to characterize crustal thicknesses.However,sometimes confusing results are obtained since there is no enough filtered data.Here,a state-of-the-art approach,based on a machine-learning algorithm,is proposed to predict crustal thickness using global major-and trace-element geochemical data of intermediate arc rocks and intraplate basalts,and their corresponding crustal thicknesses.After the validation processes,the root-mean-square error(RMSE)and the coefficient of determination(R2)score were used to evaluate the performance of the machine learning algorithm based on the learning dataset which has never been used during the training phase.The results demonstrate that the machine learning algorithm is more reliable in predicting crustal thickness than the conventional methods.The trained model predicts that the crustal thickness of the eastern North China Craton(ENCC)was-45 km from the Late Triassic to the Early Cretaceous,but-35 km from the Early Cretaceous,which corresponds to the paleo-elevation of 3.0±1.5 km at Early Mesozoic,and decease to the present-day elevation in the ENCC.The estimates are generally consistent with the previous studies on xenoliths from the lower crust and on the paleoenvironment of the coastal mountain of the ENCC,which indicates that the lower crust of the ENCC was delaminated abruptly at the Early Cretaceous.
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the Chinese Academy of Sciences“Light of West China”Program(Dawei Fan,2017 and Jingui Xu,2019)+1 种基金the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10).
文摘Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
基金financially supported by the Major State Basic Research Program of the People’s Republic of China(2012CB416600)the National Natural Science Foundation of China(41472169,41172127)the Key Program of the Ministry of Land and Resources of China(DD20160121-03,12120114021301,1212010811033,and 12120115070301)
文摘Based on the spatial distribution of ancient rocks and zircons, three ancient terranes older than ca. 2.6 Ga have recently been identified in the North China Craton, namely the Eastern, Southern, and Central Ancient Terranes. The Eastern Ancient Terrane is the best studied and understood of the three ancient terranes. It has a long geological history back to ca. 3.8 Ga ago and includes the areas of Anshan-Benxi, eastern Hebei, eastern Shandong and western Shandong. In Anshan-Benxi, several different types of 3.8 Ga rocks were discovered together with 3.1-3.7 Ga rocks, whereas 2.9-3.0 Ga K-rich granites and 2.5 Ga syenogranite occur on larger scales. In eastern Hebei, 3.0-3.4 Ga rocks and older detrital and xenocrystic zircons were identified. In eastern Shandong, there are a large volumes of 2.7 Ga and 2.9 Ga rocks. In western Shandong, early Neoarchean (2.6-2.7 Ga) intrusive and supracrustal rocks are widely distributed. Whole-rock Nd and zircon Hf isotope data suggest that both mantle additions and crustal recycling played important roles within the Eastern Ancient Terrane during almost every tectono-magmatic event. Most BIFs in the North China Craton are late Neoarchean in age and are distributed on continental crust along the western margin of the Eastern Ancient Terrane, probably suggesting that a stable environment was one of the key factors for the formation of large-scale BIFs.
基金supported by the project of China Geological Survey(Grant No.DD20190438)。
文摘The timing and mechanisms of lithospheric thinning and destruction of the North China Craton(NCC)remain controversial,and the overall geodynamics of the process are poorly understood.This paper documents Late Triassic igneous rocks including monzogranite,gabbro,and diorite from the Xiuyan District on the Liaodong Peninsula in the eastern NCC,which have LA-ICP-MS zircon U-Pb ages of 229.0±0.4 Ma,216.2±0.9 Ma,and 210.6±2.0 Ma,respectively.Monzogranite shows high-SiO_(2) adakite affinity,negative ε_(Hf)(t)values(-20.6 to-17.9),and old T_(DM2) ages(3.53-3.29 Ga),suggesting that their parental magma was derived from thickened Paleoarchean mafic lower crust and minor mantle materials that were also involved their generation.Gabbro is ultrapotassic,strongly enriched in LREEs and LILEs,depleted in HFSEs,and has evolved zircon Hf isotopes with negative ε_(Hf) of -10.04 to-5.85 and old T_(DM2) ages(2.59-2.22 Ga).These are diagnostic signatures of a crustal component,but their high contents of Mg O,Cr,Co,Ni indicate that the primary magma originated from enriched mantle.Diorite is enriched in LILEs and LREEs,depleted in HFSEs(with negative Nb,Ta,and Ti anomalies),and contains negative ε_(Hf)(t)values(-13.64 to-11.01).Compared with the gabbro,the diorite is relatively enriched in Nb,Ta and HREEs,and also contains younger T_(DM2) ages(2.11-1.94 Ga),suggesting that the diorite was formed by mixing between ancient lower crust-derived felsic magmas and asthenospheric mantle-derived magmas.Field observations,geochronology,geochemistry,and zircon Lu-Hf isotopes indicate that Late Triassic magmatism and tectonic activity resulted from deep subduction of the Yangtze Craton beneath the NCC in the Xiuyan area.This phase of tectonic activity was completed in the eastern NCC by the Late Triassic(216 Ma),and was subsequently followed by lithospheric thinning that began in the Late Triassic.
基金supported by the Major State Basic Research Development Program of China (973 Program No: 2012CB416601)+1 种基金the National Natural Science Foundation of China (No: 41322018) projectsthe National High-Level Talents Special Support Plan
文摘During the past decade,generations of Precambrian mafic dykes/sills have been investigated and revealed in the North China Craton(NCC).Researchers identified more than 20 episodes of Precambrian dyke swarms,
基金This research project was granted jointly by the State Key Program (95pre39)sponsored by the China National Science and Tech nology Departmentthe State Out standing Young Scientists Foundation (GrantNo .4 96 2 5 3 0 4 ) and the Open Lab.of Ore Depo
文摘In the eastern part of China there had occurred large\|scale gold mineralization during the Mesozoic, resulting in a large number of important gold ore\|concentrated areas. In this paper we have selected some isotope data (including four gold deposits previously studied and two gold deposits in this work) of Au\|bearing quartz veins of the representative gold deposits in six important gold ore\|concentrated areas in the periphery of the North China Platform and calculated their metallogenic ages using the method of Ludwig (2.90 version). The results show that the representative gold deposits in the six gold ore\|concentrated areas were formed during the Mesozoic.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.42130610,42075040,and 42175078)the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSQ002)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the Innovation and development project of China Meteorological Administration(Grant No.CXFZ2022J030).
文摘Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechanism consistent with the major seasonal occurrence period of extreme heat events in North China(NCSH).Observational analyses show significant decadal variability in NCSH for 1981–2021,potentially linked to the Indo-Pacific warm pool and Northwest Pacific Ocean dipole(IPOD)in early-to-mid summer.Dynamic diagnostic analysis and the linear baroclinic model(LBM)show that the positive IPOD in early-to-mid summer can excite upward vertical wind anomalies in the South China-East China Sea region,shifting the position of the western Pacific subtropical high(WPSH)to the east or weakening the degree of its control of the South China-East China Sea region,thus generating a positive geopotential height quadrupole(EAWPQ)pattern in the East Asia-Northwest Pacific region.Subsequently,the EAWPQ can cause air compression(expansion)over North China by regulating the tropospheric thickness anomalies in North China,thus increasing(decreasing)NCSH.Finally,an empirical model that incorporates the linear trend can better simulate the decadal NCSH compared to an empirical model based solely on the IPOD index,suggesting that the decadal variability of NCSH may be a combined contribution of the decadal IPOD and external linear forcing.
基金supported by Opening Project(201206)of the State Key Laboratory of Ore deposit Geochemistry,Chinese Academia of Sciencesthe National Nature Science Foundation of China(40773020,40972071,90714010,and 40634020)
文摘U-Pb zircon age, geochemical, and Sr-Nd-Pb isotopic data of mafic dykes from eastern Shandong Province, eastern China is reported herein. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses of two samples from the investigated mafic dykes yield consistent ages ranging from 121.9 Ma ± 0.47 Ma to 122.9 Ma ± 0.61 Ma. The mafic dykes are characterized by high (87Sr/86Sr) i ranging from 0.7087 to 0.7089, low εNd(t) values ranging from -16.9 to -17.8, 206Pb/204Pb = 17.15 to 17.17, 207Pb/204Pb = 15.45 to 15.47, and 208Pb/204Pb = 37.59 to 37.68. Results from the current study suggest that the mafic dykes are derived from partial melting of ancient lithospheric mantle that was variably hybridized by melts derived from foundered lower crustal eclogite. The mafic dykes may have been generated through subsequent insignificant crystal fractionation and very minor crustal contamination during magma ascent. Combined with previous studies, the current findings provide new evidence that the intense lithospheric thinning beneath the eastern Shandong Province of eastern China occurred at ~120 Ma, and that this condition was caused by the removal of the lower lithosphere (mantle and lower crust).
基金supported by the National Natural Science Foundation of China (Grant No. 40905025)GYHY201006019, and GYHY200906017
文摘The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.
基金This work was supported by the National Natural Science Foundation of China[grant number 41975088].
文摘North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40725016 and 40221503).
文摘ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) anticyclonic anomaly in the lower troposphere leading to enhanced precipitation in the Yangtze River valley, and the other is related to the southward displacement of the Asian jet stream (AJS) in the upper troposphere resulting in suppressed precipitation in the Huaihe River-Yellow River valleys. This southward displacement of the AJS is one part of ENSO's effect on the zonal flow in the whole Northern Hemisphere. After the E1 Nifio peak, the ENSO-related warming in the tropical troposphere persists into the following early summer, increasing the meridional temperature gradient and through the thermal wind balance, leads to the enhancement of westerly flow in the subtropics south of the westerly jet stream and results in a southward displacement of the westerly jet stream.
基金supported by the National Basic Research Program of China (2009CB421407)the Special Fund for Public Welfare Industry(meteorology)(GYHY200906018)the National Natural Science Foundation of China(90711004 and 40921003)
文摘The linkage between the Asian-Pacific oscillation (APO) and the precipitation over central eastern China in spring is preliminarily addressed by use of the observed data. Results show that they correlate very well, with the positive (negative) phase of APO tending to increase (decrease) the precipitation over central eastern China. Such a relationship can be explained by the atmospheric circulation changes over Asia and the North Pacific in association with the anomalous APO. A positive phase of APO, characterized by a positive anomaly over Asia and a negative anomaly over the North Pacific in the upper-tropospheric temperature, corresponds to decreased low-level geopotential height (H) and increased high-level H over Asia, and these effects are concurrent with increased low-level H and decreased high-level H over the North Pacific. Meanwhile, an anticyclonic circulation anomaly in the upper troposphere and a cyclonic circulation anomaly in the lower troposphere are introduced in East Asia, and the low-level southerly wind is strengthened over central eastern China. These changes provide advantageous conditions for enhanced precipitation over central eastern China. The situation is reversed in the negative phase of APO, leading to reduced precipitation in this region.