In this paper, elliptic flow is studied at fixed centrality in Au+Au collision at √sNN=200 GeV in the AMPT model. It is observed that with the participant increasing, elliptic flow has an increase or a decrease at d...In this paper, elliptic flow is studied at fixed centrality in Au+Au collision at √sNN=200 GeV in the AMPT model. It is observed that with the participant increasing, elliptic flow has an increase or a decrease at different fixed impact parameter, but it does not have a trivial fluctuation. It is analyzed that the initial space anisotropy dominates the participant dependence of elliptic flow in near-central collisions(b=5 fm) and mid-central collisions(b=8 fm), while the interaction between particles can mainly answer for the behavior of elliptic flow with participant in peripheral collisions (b=12 fm). To distinguish the pure geometrical effect, elliptic flow scaled by initial eccentricity is studied. It is found that the ratio v2/ε increases with participant and reaches a saturation when the participant is large enough, indicating that the collision system may reach the local equilibrium.展开更多
Within the RQMD model, space-momentum correlations, i.e. the correlations between final momentum anisotropy and initial eccentricity, are studied for 8 AGeV Au+Au events classified according to the multi-particle azi...Within the RQMD model, space-momentum correlations, i.e. the correlations between final momentum anisotropy and initial eccentricity, are studied for 8 AGeV Au+Au events classified according to the multi-particle azimuthal correlations. The results show that the final elliptic flow fluctuations depend on the initial collision geometry. There are clear space-momentum correlations for nucleons during the whole dynamical evolution of the collisions.展开更多
基金Supported by Fundamental Research Funds for Central Universities(CUGL 100237)National Natural Science Foundation of China(10835005)
文摘In this paper, elliptic flow is studied at fixed centrality in Au+Au collision at √sNN=200 GeV in the AMPT model. It is observed that with the participant increasing, elliptic flow has an increase or a decrease at different fixed impact parameter, but it does not have a trivial fluctuation. It is analyzed that the initial space anisotropy dominates the participant dependence of elliptic flow in near-central collisions(b=5 fm) and mid-central collisions(b=8 fm), while the interaction between particles can mainly answer for the behavior of elliptic flow with participant in peripheral collisions (b=12 fm). To distinguish the pure geometrical effect, elliptic flow scaled by initial eccentricity is studied. It is found that the ratio v2/ε increases with participant and reaches a saturation when the participant is large enough, indicating that the collision system may reach the local equilibrium.
基金Supported by Science Foundation of Harbin Institute of Technology (HIT.2002.47, HIT.2003.33)
文摘Within the RQMD model, space-momentum correlations, i.e. the correlations between final momentum anisotropy and initial eccentricity, are studied for 8 AGeV Au+Au events classified according to the multi-particle azimuthal correlations. The results show that the final elliptic flow fluctuations depend on the initial collision geometry. There are clear space-momentum correlations for nucleons during the whole dynamical evolution of the collisions.