The present study evaluated the application of three dimensional echocardigraphy (3DE) in the diagnosis of atrial septal defect (ASD) and the measurement of its size by 3DE and compared the size with surgical find...The present study evaluated the application of three dimensional echocardigraphy (3DE) in the diagnosis of atrial septal defect (ASD) and the measurement of its size by 3DE and compared the size with surgical findings. Two-dimensional and real-time three dimensional echocardiography (RT3DE) was performed in 26 patients with atrial septal defect, and the echocardiographic data were compared with the surgical findings. Significant correlation was found between defect diameter by RT3DE and that measured during surgery (r=0.77, P〈0.001). The defect area changed significantly during cardiac cycle. Percentage change in defect size during cardiac cycle ranged from 6%-70%. Our study showed that the size and morphology of atrial septal defect obtained with RT3DE correlate well with surgical findings. Therefore, RT3DE is a feasible and accurate non-invasive imaging tool for assessment of atrial septal size and dynamic changes.展开更多
The optimal plane for measurement of the right ventricular (RV) volumes by real-time three-dimensional echocardiography (RT3DE) was determined and the feasibility and accuracy of RT3DE in studying RV systolic function...The optimal plane for measurement of the right ventricular (RV) volumes by real-time three-dimensional echocardiography (RT3DE) was determined and the feasibility and accuracy of RT3DE in studying RV systolic function was assessed. RV “Full volume” images were acquired by RT3DE in 22 healthy subjects. RV end-diastolic volumes (RVEDV) and end-systolic volumes (RVESV) were outlined using apical biplane, 4-plane, 8-plane, 16-plane offline separately. RVSV and RVEF were calculated. Meanwhile tricuspid annual systolic excursion (TASE) was measured by M-mode echo. LVSV was outlined by 2-D echo according to the biplane Simpson's rule. The results showed: (1) There was a good correlation between RVSV measured from series planes and LVSV from 2-D echo (r=0.73; r=0.69; r=0.63; r=0.66, P<0.25—0.0025); (2) There were significant differences between RVEDV in biplane and those in 4-, 8-, 16-plane (P<0.001). There was also difference between RV volume in 4-plane and that in 8-plane (P<0.05), but there was no significant difference between RV volume in 8-plane and that in 16-plane (P>0.05); (3) Inter-observers and intro-observers variability analysis showed that there were close agreements and relations for RV volumes (r=0.986, P<0.001; r=0.93, P<0.001); (4) There was a significantly positive correlation of TASE to RVSV and RVEF from RT3DE (r=0.83; r=0.90). So RV volume measures with RT3DE are rapid, accurate and reproducible. In view of RV's complex shape, apical 8-plane method is better in clinical use. It may allow early detection of RV systolic function.展开更多
Background and objective Pre-operative assessment of mitral valve (MV) anatomy is essential to surgical design in patients undergoing MV repair.Although 2-dimensional (2D) echocardiography provides precise information...Background and objective Pre-operative assessment of mitral valve (MV) anatomy is essential to surgical design in patients undergoing MV repair.Although 2-dimensional (2D) echocardiography provides precise information regarding MV anatomy,RT-3D TEE could increase the understanding of MV apparatus and individual scallop identification.We aimed to investigate the value of RT- 3DTEE in MV repair.Methods RT-3DTEE was performed in six patients with mitral valve prolapse (MVP) by using Philips 1E33 with X7-2t probe.Preoperative RT-3DTEE studies were compared with surgical findings in patients undergoing surgical mitral valve repair,and quantitative evaluation was performed by QLab 6.0 software before and after surgical mitral valve repair.Results RT- 3DTEE could display dynamic morphology of MV,the location of prolapse,and spatial relation to the surrounding tissue.It could provide surgical views of the valves and the valvular apparatus.These results were consistent with surgical findings.The quantitative evaluation before and after surgical MV repair indicated that anterolateral to posteromedial diameter of annulus,anterior to posterior diameter of annulus,perimeter of annulus,and area of annulus in projection plane were significantly smaller after operation compared with those before operation (P【0.05).The length of posterior leaflet,the area of anterior and posterior leaflet,the maximal prolapse height,the volume of leaflet prolapse and the length of coaptation in projection plane were significantly reduced after operation (P【0. 05).Conclusion RT-3DTEE is a unique new modality for rapid and accurate evaluation ofmitral valve prolapse and mitral valve repair.展开更多
The application of real-time three-dimensional echocardiography (RT 3DE) in the diagnosis of double orifice mitral valve (DOMV) was explored. Five cases of DOMV were examined by using 2-dimensional echocardiograp...The application of real-time three-dimensional echocardiography (RT 3DE) in the diagnosis of double orifice mitral valve (DOMV) was explored. Five cases of DOMV were examined by using 2-dimensional echocardiography (2DE) and RT 3DE. The spatial morphology of malformed mitral valve and its change in hemodynamics were observed. DOMV associated with partial atrioventricular septal defect was found in 3 cases (in which 2 cases had cleft mitral valve) and isolated DOMV in 2 cases; and moderate to severe mitral regurgitation was detected in 3 cases, and mild mitral regurgitation in 1, and no regurgitation in 1 case; 1 case had complicated rhumatic heart disease. Three cases were preoperatively discovered by 2DE, while 2 missed (1 case was discovered postoperatively). Four cases were diagnosed by RT 3DE preoperatively, and 1 case was diagnosed postoperatively (not examined by RT 3DE preoperatively). It was suggested that RT 3DE is a reliable technique in the diagnosis of DOMV; it permitted comprehensive and noninvasive assessment of mitral valve and may supplement 2D TTE in the assessment of DOMV.展开更多
Stereoscopic three-dimensional echocardiography(S-3DE) is a novel displaying technol-ogy based on real-time 3-dimensional echocardiography (RT-3DE). Our study was to evaluate the feasibility and efficiency of S-3D...Stereoscopic three-dimensional echocardiography(S-3DE) is a novel displaying technol-ogy based on real-time 3-dimensional echocardiography (RT-3DE). Our study was to evaluate the feasibility and efficiency of S-3DE in the diagnosis of atrial septal defect (ASD) and its use in the guidance for transcatheter ASD occlusion. Twelve patients with secundum ASD underwent RT-3DE examination and 9 of the 12 were subjected to transcatheter closure of ASD. Stereoscopic vision was generated with a high-performance volume renderer with red-green stereoscopic glasses. S-3DE was compared with standard RT-3D display for the assessment of the shape, size, and the surrounding tis-sues of ASD and for the guidance of ASD occlusion. The appearance rate of coronary sinus and the mean formation time of the IVC, SVC were compared. Our results showed that S-3DE could measure the diameter of ASD accurately and there was no significant difference in the measurements between S-3DE and standard 3D display (2.89±0.73 cm vs 2.85±0.72 cm, P〉0.05; r=0.96, P〈0.05). The appearance of coronary sinus for S-3DE was higher as compared with the standard 3D display (93.3% vs 100%). The mean time of the IVC, SVC for S-3DE monitor was slightly shorter than that of the standard 3D display (11.0±3.8 s vs 10.3±3.6 s, P〉0.05). The mean completion time of interven-tional procedure was shortened with S-3DE display as compared with standard 3D display (17.3±3.1 min vs 23.0±3.9 min, P〈0.05). Stereoscopic three-dimensional echocardiography could improve the visualization of three-dimensional echocardiography, facilitate the identification of the adjacent structures, decrease the time required for interventional manipulation. It may be a feasible, safe, and efficient tool for guiding transcatheter septal occlusion or the surgical interventions.展开更多
In order to evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization with intravenous real-time myocardial contrast echocardiography (RT-MCE), intravenous RT-MCE was pe...In order to evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization with intravenous real-time myocardial contrast echocardiography (RT-MCE), intravenous RT-MCE was performed on 20 patients with myocardial infarction before coronary revascularization. Follow-up echocardiography was performed 3 months after coronary revascularization. Segmental wall motion was assessed using 18-segment LV model and classified as normal, hypokinesis, akinesis and dyskinesis. Myocardial perfusion was assessed by visual interpretation and divided into 3 conditions: homogeneous opacification=l; partial or reduced opaciflcation or subendocardial contrast defect=2; constrast defect=3. Myocardial perfusion score index (MPSI) was calculated by dividing the total sum of contrast score by the total number of segments with abnormal wall motion. Twenty patients were classified into 2 groups according to the MPSI: MPSI≤I.5 as good myocardial perfusion, MPSI〉1.5 as poor myocardial perfusion. To assess the left ventricular remodeling, the following comparisons were carried out: (1) Comparisons of left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) before and 3 months after revascularization in two groups;(2) Comparisons of LVEF, LVESV and LVEDV pre-revascularization between two groups and comparisons of these 3 months post-revascularization between two groups; (3) Comparisons of the differences in LVEF, LVESV and LVEDV between 3 months post-and pre-revascularization (ALVEF, ALVESV and ALVEDV) between two groups; (4) The linear regression analysis between ALVEF, ALVESV, ALVEDV and MPSI. The results showed that the LVEF obtained 3 months after revascularization in patients with MPSI〉1.5 was obviously lower than that in those with MPSI〈1.5. The LVEDV obtained 3 months post-revascularization in patients with MPSI〉1.5 was obviously larger than that in those with MPSI≤1.5 (P=0.002 and 0.04). The differences in ALVEF and ALVEDV between patients with MPSI〉I.5 and those with MPSI≤1.5 were significant (P=0.002 and 0.001, respectively). Linear regression analysis revealed that MPSI had a negative correlation with ALVEF and a positive correlation with ALVESV, ALVEDV (P=0.004, 0.008, and 0.016, respectively). It was concluded that RT-MCE could accurately evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization.展开更多
AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.MET...AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.METHODS Our retrospective cohort study examined the MVA and TVA in 49 patients by RT3 D TEE. MVA and TVA shape were examined by TEE. The MVA and TVA volume data set images were acquired in the mid esophageal 4-chamber view. The MVA and TVA were acquired separately, with optimization of each for the highest frame rate and image quality. The 3D shape of the annuli was reconstructed using the Philips~? Q lab, MVQ ver. 6.0 MVA model software. The end-systolic frame was used. The parameters measured and compared were annular area, circumference, high-low distances(height), anterolateralposterolateral(ALPM), and anteroposterior(AP) axes. RESULTS A total of 49 patients(mean age 61 ± 14 years, 45% males) were studied. The ALPM and the AP axes of the MVA and TVA are not significantly different. The ALPM axis of the MVA was 37.9 ± 6.4 mm and 38.0 ± 5.6 mm for the TVA(P = 0.70). The AP axis of the MVA was 34.8 ± 5.7 mm and 34.9 ± 6.2 mm for the TVA(P = 0.90). The MVA and the TVA had similar circumference and area. The circumference of the MVA was 127.9 ± 16.8 mm and 125.92 ± 16.12 mm for the TVA(P = 0.23). The area of the MVA was 1103.7 ± 307.8 mm^2 and 1131.7 ± 302.0 mm^2 for the TVA(P = 0.41). The MVA and TVA are similar oval structures, but with significantly different heights. The ALPM/AP ratio for the MVA was 1.08 ± 0.33 and 1.09 ± 0.28 for the TVA(P < 0.001). The height for the MVA and TVA was 9.23 ± 2.11 mm and 4.37 ± 1.48 mm, respectively(P < 0.0001). CONCLUSION RT3 D TEE plays an unprecedented role in the management of valvular heart disease. The specific and exclusive shape of the MVA and TVA was revealed in our study of patients studied. Moreover, the intricate codependence of the MVA and the TVA depends on their distinctive shapes. This realization seen from our study will allow us to better understand the role valvular disease plays in disease states such as hypertrophic cardiomyopathy and pulmonary hypertension.展开更多
To evaluate the feasibility of real-time myocardial contrast echocardiography (RTMCE) by quantitative analysis of myocardial perfusion in rabbits, transthoracic RTMCE was performed in 10 healthy rabbits by using con...To evaluate the feasibility of real-time myocardial contrast echocardiography (RTMCE) by quantitative analysis of myocardial perfusion in rabbits, transthoracic RTMCE was performed in 10 healthy rabbits by using continuous infusion of SonoVue into the auricular vein. The short axis view at the papillary muscle level was obtained. The duration of the time that the contrast took to appear in right heart, left heart and myocardium was recorded. The regional myocardial signal intensity (SI) versus re-filling time plots were fitted to an exponential function: y(t) =A(1–e–β(t–t0)) + C, where y is SI at any given time, A is the SI plateau that reflects myocardial blood volume, and β is the slope of the refilling curve that reflects myocardial microbubble velocity. The A, β and A×β values at different infusion rate of SonoVue were analyzed and the A, β and A×β values in each segment in the short axis view at the papillary muscle level were compared. All the animal experiments were successful and high-quality im-ages were obtained. The best intravenous infusion rate for SonoVue was 30 mL/h. The contrast appeared in right heart, left heart and myocardium at 7.5±2.2 s, 9.1±2.4 s and 12.2±1.6 s respectively. After 16.6±2.3s, myocardial opacification reached a steady state. The mean A, β and A×β value in the short axis view at the papillary muscle level were 9.8±3.0 dB, 1.4±0.5 s-1 and 13.5±3.6 dB×s-1 respectively. A, β and A×β values showed no significant differences among 6 segments. It was suggested that RTMCE was feasible for quantitative analysis of myocardial perfusion in rabbits. It provides a non-invasive method to evaluate the myocardial perfusion in rabbit disease models.展开更多
Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the pe...Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the perioperative period. Methods Thirty-one patients with mitral valve prolapse underwent mitral valve repair using chordae tendineae replacement concomitant with implantation展开更多
Background Both real-time three-dimensional echocardi ography (RT3DE) and myocardial contrast echocardiography (MCE) are novel imaging techniques. The purpose of this study was to confirm the feasibility and accuracy ...Background Both real-time three-dimensional echocardi ography (RT3DE) and myocardial contrast echocardiography (MCE) are novel imaging techniques. The purpose of this study was to confirm the feasibility and accuracy of RT3DE combined with MCE for quantitative evaluation of myocardial perfusion defects. Methods Thirteen dogs underwent ligation of the left anterior descending artery (LAD, n=6) or distal branch of the left circumflex artery (LCX, n=7) under general anaesthesia. Three to four ml of a perfluoropropane (C 3F 8) microbubble contrast agent was injected intravenously to assess the resulting myocardial perfusion defects with a commercially available Philips SONOS-7500 ultrasound system. After removal of the dog hearts, Evans blue dye was injected via the left and righ t coronary arteries to stain the myocardium at risk. In vitro anatomic measurements of myocardial mass after removal of the animals’ hearts were used as control s. Results Left ventricular (LV) mass determined by RT3DE ranged 36.7-68.9 g [mean, (54.6±9.6) g] before coronary artery ligation, and correlated highly (r=0.99) with in vitro measurement of LV mass [range, 38.9-71.1 g; mean, (55.6±9.3) g]. There was no significant difference between RT3DE and in vitro measurements of LV mass [range, 36.7-68.9 g; mean, (51.3±12.5) g. Or range, 38.9-71. 1 g; mean, (53.7±12.3) g, respectively] and under-perfused mass [range, 0-21.4 g; mean, (12.0±6.9) g. Or range, 0-19.8 g; mean, (10.8±6.3) g, respectively] after th e LAD ligation (P>0.05). Likewise, no significant difference was present between RT3DE and in vitro measurements of LV mass [range, 50.1-65.4 g; mean, (57.5±5.9 ) g. Or range, 51.5-65.8 g; mean, (57.3±6.4) g, respectively] and under-perfused m ass [range, 0-25.6 g; mean, (13.3±9.6) g. Or range, 0-22.7 g; mean, (12.8±8.1 ) g, respectively] after the LCX ligation (P>0.05). For all the animals with coronary ligation, LV mass measured by RT3DE ranged 35.9-68.6 g [mean, (54.8±10.0) g] a nd there was no significant difference between RT3DE and in vitro measurements of LV mass and under-perfused mass (P>0.05, r=0.99). Further, the under-perfused mass derived from RT3DE [range, 0-25.6 g; mean, (12.7±8.2) g] correlate d strongly with the in vitro measurements [range, 0-22.7 g; mean, (11.9±7.2) g] ( r=0.96). Conclusion RT3DE with MCE is a rapid and accurate method for estimating LV myocardial mass and quantifying perfusion defects.展开更多
Background Assessment of the left ventricular (LV) and the right ventricular (RV) volumes and their functions is important for prognostic prediction and clinical decision making. We compared the accuracy for quantify...Background Assessment of the left ventricular (LV) and the right ventricular (RV) volumes and their functions is important for prognostic prediction and clinical decision making. We compared the accuracy for quantifying the LV and the RV volumes in vitro between conventional two-dimensional echocardiography (2DE) and real-time three-dimensional echocardiography (RT3DE) Methods The volumes of 37 rubber-models (10 regularly shaped to simulate normal LV, 7 shaped to simulate LV with symmetric aneurysm, 8 shaped to simulate LV with asymmetric aneurysm, and 12 irregularly shaped to simulate normal RV) and 10 excised canine hearts were measured by RT3DE and 2DE On RT3DE 'full volume' imaging, the inner-surfaces of the rubber-models and canine LV and RV were outlined and the volumes were measured using 2-, 4-, 8- and 16-plane methods with the RT3DE analysis software On 2DE imaging, the volumes were measured by the Simpson method The LV and RV volumes measured by drained water were served as reference values, with which we compared RT3DE and 2DE data Results In rubber models mimicking normal LV and LV with symmetric aneurysms, RT3DE results were strongly correlated with reference values ( r =0 795-0 998) and there was a good correlation between 2DE estimates and reference values ( r =0 715-0 729) There were no significant differences between RT3DE estimates, 2DE results and reference values ( P >0 05) In rubber models mimicking the RV and LV with asymmetric aneurysm, RT3DE strongly correlated with reference values ( r =0 765-0 988), but 2DE weakly correlated with reference values ( r =0 518-0 592) There were no differences between RT3DE and reference values ( P >0 05), but a significant difference between 2DE and reference values occurred ( P <0 05) For excised canine hearts, there was a strong correlation between RT3DE and reference values ( r =0 728-0 914), while 2DE showed a less obvious correlation ( r =0 502-0 615) Again, there were no significant differences between RT3DE and reference values ( P >0 05), but there was a significant difference between 2DE and reference values ( P <0 05) Conclusions RT3DE can accurately quantify LV and RV volumes and provides a new tool to evaluate LV and RV function For LV and RV measurements by RT3DE, 8-plane strategy is the optimum choice for accuracy and convenience展开更多
Background Recent advances in real-time three-dimensional echocardiography (RT3DE) offer the potential to assess the left ventricular (LV) dyssynchrony simultaneously by analyzing the 17 segments time-volume curve...Background Recent advances in real-time three-dimensional echocardiography (RT3DE) offer the potential to assess the left ventricular (LV) dyssynchrony simultaneously by analyzing the 17 segments time-volume curves. The purpose of this study was to test the feasibility and accuracy of RT3DE for quantitative evaluation of left ventricular systolic synchronicity. Methods Twenty-four patients with dilated cardiomyopathy (DCM) and twenty-ftve healthy volunteers were enrolled in this study. Full volume RT3DE was performed by using Philips IE33 with X3-1 probe. The global and 17-segmental time-volume curves were obtained by the on-line Qlab software (version 4.2). The time to minimal systolic volume in each segment (Tmsv) was taken to derive the following indexes of systolic asynchrony: Tmsv 16-SD, Tmsv 16-Dif, Tmsv 12-SD, Tmsv 12-Dif, Tmsv 6-SD and Tmsv 6-Dif, which meant the standard deviation or the maximal difference of Tmsv among the 16, 12 and 6 segments of the left ventricle respectively. The software also provided with each of the above parameters as a percentage of the cardiac cycle. Results Tmsv 16-SD, Tmsv 12-SD and Tmsv 6-SD were all significantly larger in the DCM group than those of the control group [Tmsv 16-SD: (52.9±40.6) ms vs (8.8±6.2) ms; Tmsv 12-SD: (29.5+30.8) ms vs (6.9±4.0) ms; Tmsv 6-SD: (28.9±34.6) ms vs (7.0±4.7)ms, all P≤0.001]. Tmsv 16-Dif, Tmsv 12-Dif and Tmsv 6-Dif were also significantly larger in the DCM group. There were close negative relations between the LVEF determined by RT3DE and each of the indexes of systolic asynchrony, among which the indexes of Tmsv-16-SD% and Tmsv-16-Dif% correlated most closely (r=-0.703 and r=-0.701, respectively). The DCM patients had significantly larger EDV and ESV, with significantly reduced LVEF compared with the healthy subjects. Conclusion RT3DE provides a simple, useful and unique approach to assess the systolic synchronicity of all the left ventricular segments simultaneously.展开更多
Background The left atrial appendage (LAA) is an important source of thrombus formation. We investigated the feasibility of the recently developed real-time three-dimensional transesophageal echocardiography (RT3D-...Background The left atrial appendage (LAA) is an important source of thrombus formation. We investigated the feasibility of the recently developed real-time three-dimensional transesophageal echocardiography (RT3D-TEE) method in assessment of the morphology and function of the LAA. Methods Ninety-six consecutive patients (58 males with a mean age of (43.4±12.5) years) who were referred for 2-dimensional (2D) transesophageal echocardiography (TEE) underwent additional RT3D-TEE. LAA morphology was visualized in multiple views. Orifice size, depth, volumes and ejection fraction (EF) of the LAA, were measured. Results All the patients underwent RT3D-TEE examination without complications. Ninety-two patients (95.8%) had adequate images for visualization and quantitative analysis of the LAA. The LAA exhibited great variability with respect to relative dimensions and morphology. LAA orifice area was (3.8±1.2) cm^2 with a diameter of (2.4±0.9) cm x (1.4±0.6) cm. The mean depth of the LAA was (2.9±0.7) cm. End-diastolic volume (EDV-LAA), end-systolic volume (ESV-LAA) and EF of the LAA were (6.2±3.7) ml, (4.1±2.8) ml, and 0.35±0.16, respectively. EDV-LAA, ESV-LAA and the orifice area of the LAA in patients with atrial fibrillation (AF) were larger than those without AF, whereas the EF was smaller in the AF patients. Conclusions Defining LAA morphology and quantitative analysis of the size and function of the LAA with superior quality and resolution of images using RT3D-TEE is feasible. This technique may be an ideal tool for guidance of the LAA occlusion procedure. Determination of LAA volumes and volume-derived EF by RT3D-TEE provides new insights into the analysis of LAA function.展开更多
Background Left atrial (LA) maximum volume is becoming a prognostic biomarker for left ventricular (LV) diastolic dysfunction. However, we assessed LV diastolic function by measuring LA phasic volumes using real-t...Background Left atrial (LA) maximum volume is becoming a prognostic biomarker for left ventricular (LV) diastolic dysfunction. However, we assessed LV diastolic function by measuring LA phasic volumes using real-time threedimensional echocardiography (RT3DE) in patients with stable coronary artery disease (CAD). Methods Sixty-five stable CAD patients with normal LV ejection fraction (LVEF) were divided into three groups according to degree of coronary stenosis: control (n=15) with 〈50% stenosis as control group, mildS (n=25) with mild stenosis (50%- 70%) and severeS (n=25) with 〉70% stenosis. LA phasic volumes and function were evaluated and compared using RT3DE and two dimensional echocardiography (2DE). N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were examined. The correlations of RT3DE-derived parameters with other conventional indices were analyzed. Results Significant correlations between RT3DE and 2DE for LA volume measurements were: control, r=0.93; mildS, 1=0.94; severeS, r=0.90 (all P 〈0.05). Patients with severe coronary stenosis presented higher NT-proBNP level, indices of LA minimum volume and volume before atrial contraction, but lower LA total emptying fraction (LAEF) and LAEFpass^ve. Significant correlations of RT3DE derived LA volume indices with E/E' (r=0.695) and NF-proBNP (r=0.630) level were found. Conclusions RT3DE derived, LA indices correlate well with NT-proBNP level and may be superior to 2DE measurements for the evaluation of LV diastolic dysfunction. Enlargement of LA minimum volume in stable CAD patients without systolic dysfunction appears earlier and may be better correlated with LV diastolic function than that of LA maximum volume.展开更多
Background Two-dimensional speckle tracking imaging (2D-STI) and real-time three-dimensional echocardiography (RT-3DE) have more advantages in evaluating left ventricular (LV) systolic dyssynchrony than traditio...Background Two-dimensional speckle tracking imaging (2D-STI) and real-time three-dimensional echocardiography (RT-3DE) have more advantages in evaluating left ventricular (LV) systolic dyssynchrony than traditional echocardiographic techniques. The study aimed to evaluate LV dyssynchrony parameters by both 2D-STI and RT-3DE, and the correlation between these two techniques. Methods A total of 43 chronic heart failure (CHF) patients and 27 healthy volunteers were enrolled. There were 23 dyssynchrony parameters selected to evaluate left ventricular systolic synchronization, involving 15 from 2D-STI and 8 from RT-3DE. Results Few of the dyssynchrony parametersshowednegative correlations with LV ejection fraction (LVEF) in the CHF group. The difference between time to peak-systolic radial strain of the anteroseptal and posterior segments at the level of papillary muscles [AS-P(RS)] from 2D-STI showed positive correlations with parts of the parameters from RT-3DE (P 〈 0.05). Conclusions LV systolic dysfunction does not correlate with dyssynchrony. Moreover, there is a weak association between 2D-STI and RT-3DE in assessment of left ventricular dyssynchrony.展开更多
Left ventricular remodeling index (LVRI) was assessed in patients with hypertensive heart disease (HHD) and coronary artery disease (CAD) by real-time three-dimensional echocardiography (RT3DE). RT3DE data of ...Left ventricular remodeling index (LVRI) was assessed in patients with hypertensive heart disease (HHD) and coronary artery disease (CAD) by real-time three-dimensional echocardiography (RT3DE). RT3DE data of 18 patients with HHD, 20 patients with CAD and 22 normal controis (NC) were acquired. Left ventricular end-diastolic volume (EDV) and left ventricular end-diastolic epicardial volume (EDVepi) were detected by RT3DE and two-dimensional echocardiography Simpson biplane method (2DE). LVRI (left ventricular mass/EDV) was calculated and compared. The results showed that LVRI measurements detected by RT3DE and 2DE showed significant differences inter-groups (P〈0.01). There was no significant difference in NC group (P〉0.05), but significant difference in HHD and CAD intra-group (P〈0.05). There was good positive correlations between LVRI detected by RT3DE and 2DE in NC and HHD groups (t=0.69, P〈0.01; r=0.68, P〈0.01), but no significant correlation in CAD group (r=0.30, P〉0.05). It was concluded that LVRI derived from RT3DE as a new index for evaluating left ventricular remodeling can provide more superiority to LVRI derived from 2DE.展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
The volume-time curve change in patients with normal left ventricular (LV) diastolic function and diastolic dysfunction was evaluated by real-time three-dimensional echocardiography (RT3DE). LV diastolic dysfuncti...The volume-time curve change in patients with normal left ventricular (LV) diastolic function and diastolic dysfunction was evaluated by real-time three-dimensional echocardiography (RT3DE). LV diastolic dysfunction was defined by E'〈A' in pulse-wave tissue Doppler for inter-ventricular septal (IVS) of mitral annulus. In 24 patients with LV diastolic dysfunction, including 12 patients with delayed relaxation (delayed relaxation group) and 12 patients with pseudo-normal function (pseudo-normal group) and 24 normal volunteers (control group), data of full-volume image were acquired by real-time three-dimensional echocardiography and subjected to volume-time curve analysis. EDV (end-diastolic volume), ESV (end-systolic volume), LVEF (left ventricular ejection fraction), PER (peak ejection rate), PFR (peak filling rate) from RT3DE were examined in the three groups. Compared to the control group, PFR (diastolic filling index of RT3DE) was significantly reduced in the delayed relaxation group and pseudo-normal group (P〈0.05). There were no significant differences in EDV, ESV, LVEE PER (P〉0.05). It is concluded that PFR, as a diastolic filling index of RT3DE, can reflect the early diastolic function and serve as a new non-invasive, quick and accurate tool for clinical assessment of LV diastolic function.展开更多
基金supported by a grant from the Youth Science Foundation of China (No.30600213)
文摘The present study evaluated the application of three dimensional echocardigraphy (3DE) in the diagnosis of atrial septal defect (ASD) and the measurement of its size by 3DE and compared the size with surgical findings. Two-dimensional and real-time three dimensional echocardiography (RT3DE) was performed in 26 patients with atrial septal defect, and the echocardiographic data were compared with the surgical findings. Significant correlation was found between defect diameter by RT3DE and that measured during surgery (r=0.77, P〈0.001). The defect area changed significantly during cardiac cycle. Percentage change in defect size during cardiac cycle ranged from 6%-70%. Our study showed that the size and morphology of atrial septal defect obtained with RT3DE correlate well with surgical findings. Therefore, RT3DE is a feasible and accurate non-invasive imaging tool for assessment of atrial septal size and dynamic changes.
文摘The optimal plane for measurement of the right ventricular (RV) volumes by real-time three-dimensional echocardiography (RT3DE) was determined and the feasibility and accuracy of RT3DE in studying RV systolic function was assessed. RV “Full volume” images were acquired by RT3DE in 22 healthy subjects. RV end-diastolic volumes (RVEDV) and end-systolic volumes (RVESV) were outlined using apical biplane, 4-plane, 8-plane, 16-plane offline separately. RVSV and RVEF were calculated. Meanwhile tricuspid annual systolic excursion (TASE) was measured by M-mode echo. LVSV was outlined by 2-D echo according to the biplane Simpson's rule. The results showed: (1) There was a good correlation between RVSV measured from series planes and LVSV from 2-D echo (r=0.73; r=0.69; r=0.63; r=0.66, P<0.25—0.0025); (2) There were significant differences between RVEDV in biplane and those in 4-, 8-, 16-plane (P<0.001). There was also difference between RV volume in 4-plane and that in 8-plane (P<0.05), but there was no significant difference between RV volume in 8-plane and that in 16-plane (P>0.05); (3) Inter-observers and intro-observers variability analysis showed that there were close agreements and relations for RV volumes (r=0.986, P<0.001; r=0.93, P<0.001); (4) There was a significantly positive correlation of TASE to RVSV and RVEF from RT3DE (r=0.83; r=0.90). So RV volume measures with RT3DE are rapid, accurate and reproducible. In view of RV's complex shape, apical 8-plane method is better in clinical use. It may allow early detection of RV systolic function.
文摘Background and objective Pre-operative assessment of mitral valve (MV) anatomy is essential to surgical design in patients undergoing MV repair.Although 2-dimensional (2D) echocardiography provides precise information regarding MV anatomy,RT-3D TEE could increase the understanding of MV apparatus and individual scallop identification.We aimed to investigate the value of RT- 3DTEE in MV repair.Methods RT-3DTEE was performed in six patients with mitral valve prolapse (MVP) by using Philips 1E33 with X7-2t probe.Preoperative RT-3DTEE studies were compared with surgical findings in patients undergoing surgical mitral valve repair,and quantitative evaluation was performed by QLab 6.0 software before and after surgical mitral valve repair.Results RT- 3DTEE could display dynamic morphology of MV,the location of prolapse,and spatial relation to the surrounding tissue.It could provide surgical views of the valves and the valvular apparatus.These results were consistent with surgical findings.The quantitative evaluation before and after surgical MV repair indicated that anterolateral to posteromedial diameter of annulus,anterior to posterior diameter of annulus,perimeter of annulus,and area of annulus in projection plane were significantly smaller after operation compared with those before operation (P【0.05).The length of posterior leaflet,the area of anterior and posterior leaflet,the maximal prolapse height,the volume of leaflet prolapse and the length of coaptation in projection plane were significantly reduced after operation (P【0. 05).Conclusion RT-3DTEE is a unique new modality for rapid and accurate evaluation ofmitral valve prolapse and mitral valve repair.
文摘The application of real-time three-dimensional echocardiography (RT 3DE) in the diagnosis of double orifice mitral valve (DOMV) was explored. Five cases of DOMV were examined by using 2-dimensional echocardiography (2DE) and RT 3DE. The spatial morphology of malformed mitral valve and its change in hemodynamics were observed. DOMV associated with partial atrioventricular septal defect was found in 3 cases (in which 2 cases had cleft mitral valve) and isolated DOMV in 2 cases; and moderate to severe mitral regurgitation was detected in 3 cases, and mild mitral regurgitation in 1, and no regurgitation in 1 case; 1 case had complicated rhumatic heart disease. Three cases were preoperatively discovered by 2DE, while 2 missed (1 case was discovered postoperatively). Four cases were diagnosed by RT 3DE preoperatively, and 1 case was diagnosed postoperatively (not examined by RT 3DE preoperatively). It was suggested that RT 3DE is a reliable technique in the diagnosis of DOMV; it permitted comprehensive and noninvasive assessment of mitral valve and may supplement 2D TTE in the assessment of DOMV.
文摘Stereoscopic three-dimensional echocardiography(S-3DE) is a novel displaying technol-ogy based on real-time 3-dimensional echocardiography (RT-3DE). Our study was to evaluate the feasibility and efficiency of S-3DE in the diagnosis of atrial septal defect (ASD) and its use in the guidance for transcatheter ASD occlusion. Twelve patients with secundum ASD underwent RT-3DE examination and 9 of the 12 were subjected to transcatheter closure of ASD. Stereoscopic vision was generated with a high-performance volume renderer with red-green stereoscopic glasses. S-3DE was compared with standard RT-3D display for the assessment of the shape, size, and the surrounding tis-sues of ASD and for the guidance of ASD occlusion. The appearance rate of coronary sinus and the mean formation time of the IVC, SVC were compared. Our results showed that S-3DE could measure the diameter of ASD accurately and there was no significant difference in the measurements between S-3DE and standard 3D display (2.89±0.73 cm vs 2.85±0.72 cm, P〉0.05; r=0.96, P〈0.05). The appearance of coronary sinus for S-3DE was higher as compared with the standard 3D display (93.3% vs 100%). The mean time of the IVC, SVC for S-3DE monitor was slightly shorter than that of the standard 3D display (11.0±3.8 s vs 10.3±3.6 s, P〉0.05). The mean completion time of interven-tional procedure was shortened with S-3DE display as compared with standard 3D display (17.3±3.1 min vs 23.0±3.9 min, P〈0.05). Stereoscopic three-dimensional echocardiography could improve the visualization of three-dimensional echocardiography, facilitate the identification of the adjacent structures, decrease the time required for interventional manipulation. It may be a feasible, safe, and efficient tool for guiding transcatheter septal occlusion or the surgical interventions.
文摘In order to evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization with intravenous real-time myocardial contrast echocardiography (RT-MCE), intravenous RT-MCE was performed on 20 patients with myocardial infarction before coronary revascularization. Follow-up echocardiography was performed 3 months after coronary revascularization. Segmental wall motion was assessed using 18-segment LV model and classified as normal, hypokinesis, akinesis and dyskinesis. Myocardial perfusion was assessed by visual interpretation and divided into 3 conditions: homogeneous opacification=l; partial or reduced opaciflcation or subendocardial contrast defect=2; constrast defect=3. Myocardial perfusion score index (MPSI) was calculated by dividing the total sum of contrast score by the total number of segments with abnormal wall motion. Twenty patients were classified into 2 groups according to the MPSI: MPSI≤I.5 as good myocardial perfusion, MPSI〉1.5 as poor myocardial perfusion. To assess the left ventricular remodeling, the following comparisons were carried out: (1) Comparisons of left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) before and 3 months after revascularization in two groups;(2) Comparisons of LVEF, LVESV and LVEDV pre-revascularization between two groups and comparisons of these 3 months post-revascularization between two groups; (3) Comparisons of the differences in LVEF, LVESV and LVEDV between 3 months post-and pre-revascularization (ALVEF, ALVESV and ALVEDV) between two groups; (4) The linear regression analysis between ALVEF, ALVESV, ALVEDV and MPSI. The results showed that the LVEF obtained 3 months after revascularization in patients with MPSI〉1.5 was obviously lower than that in those with MPSI〈1.5. The LVEDV obtained 3 months post-revascularization in patients with MPSI〉1.5 was obviously larger than that in those with MPSI≤1.5 (P=0.002 and 0.04). The differences in ALVEF and ALVEDV between patients with MPSI〉I.5 and those with MPSI≤1.5 were significant (P=0.002 and 0.001, respectively). Linear regression analysis revealed that MPSI had a negative correlation with ALVEF and a positive correlation with ALVESV, ALVEDV (P=0.004, 0.008, and 0.016, respectively). It was concluded that RT-MCE could accurately evaluate the left ventricular remodeling in patients with myocardial infarction after revascularization.
文摘AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.METHODS Our retrospective cohort study examined the MVA and TVA in 49 patients by RT3 D TEE. MVA and TVA shape were examined by TEE. The MVA and TVA volume data set images were acquired in the mid esophageal 4-chamber view. The MVA and TVA were acquired separately, with optimization of each for the highest frame rate and image quality. The 3D shape of the annuli was reconstructed using the Philips~? Q lab, MVQ ver. 6.0 MVA model software. The end-systolic frame was used. The parameters measured and compared were annular area, circumference, high-low distances(height), anterolateralposterolateral(ALPM), and anteroposterior(AP) axes. RESULTS A total of 49 patients(mean age 61 ± 14 years, 45% males) were studied. The ALPM and the AP axes of the MVA and TVA are not significantly different. The ALPM axis of the MVA was 37.9 ± 6.4 mm and 38.0 ± 5.6 mm for the TVA(P = 0.70). The AP axis of the MVA was 34.8 ± 5.7 mm and 34.9 ± 6.2 mm for the TVA(P = 0.90). The MVA and the TVA had similar circumference and area. The circumference of the MVA was 127.9 ± 16.8 mm and 125.92 ± 16.12 mm for the TVA(P = 0.23). The area of the MVA was 1103.7 ± 307.8 mm^2 and 1131.7 ± 302.0 mm^2 for the TVA(P = 0.41). The MVA and TVA are similar oval structures, but with significantly different heights. The ALPM/AP ratio for the MVA was 1.08 ± 0.33 and 1.09 ± 0.28 for the TVA(P < 0.001). The height for the MVA and TVA was 9.23 ± 2.11 mm and 4.37 ± 1.48 mm, respectively(P < 0.0001). CONCLUSION RT3 D TEE plays an unprecedented role in the management of valvular heart disease. The specific and exclusive shape of the MVA and TVA was revealed in our study of patients studied. Moreover, the intricate codependence of the MVA and the TVA depends on their distinctive shapes. This realization seen from our study will allow us to better understand the role valvular disease plays in disease states such as hypertrophic cardiomyopathy and pulmonary hypertension.
文摘To evaluate the feasibility of real-time myocardial contrast echocardiography (RTMCE) by quantitative analysis of myocardial perfusion in rabbits, transthoracic RTMCE was performed in 10 healthy rabbits by using continuous infusion of SonoVue into the auricular vein. The short axis view at the papillary muscle level was obtained. The duration of the time that the contrast took to appear in right heart, left heart and myocardium was recorded. The regional myocardial signal intensity (SI) versus re-filling time plots were fitted to an exponential function: y(t) =A(1–e–β(t–t0)) + C, where y is SI at any given time, A is the SI plateau that reflects myocardial blood volume, and β is the slope of the refilling curve that reflects myocardial microbubble velocity. The A, β and A×β values at different infusion rate of SonoVue were analyzed and the A, β and A×β values in each segment in the short axis view at the papillary muscle level were compared. All the animal experiments were successful and high-quality im-ages were obtained. The best intravenous infusion rate for SonoVue was 30 mL/h. The contrast appeared in right heart, left heart and myocardium at 7.5±2.2 s, 9.1±2.4 s and 12.2±1.6 s respectively. After 16.6±2.3s, myocardial opacification reached a steady state. The mean A, β and A×β value in the short axis view at the papillary muscle level were 9.8±3.0 dB, 1.4±0.5 s-1 and 13.5±3.6 dB×s-1 respectively. A, β and A×β values showed no significant differences among 6 segments. It was suggested that RTMCE was feasible for quantitative analysis of myocardial perfusion in rabbits. It provides a non-invasive method to evaluate the myocardial perfusion in rabbit disease models.
文摘Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the perioperative period. Methods Thirty-one patients with mitral valve prolapse underwent mitral valve repair using chordae tendineae replacement concomitant with implantation
文摘Background Both real-time three-dimensional echocardi ography (RT3DE) and myocardial contrast echocardiography (MCE) are novel imaging techniques. The purpose of this study was to confirm the feasibility and accuracy of RT3DE combined with MCE for quantitative evaluation of myocardial perfusion defects. Methods Thirteen dogs underwent ligation of the left anterior descending artery (LAD, n=6) or distal branch of the left circumflex artery (LCX, n=7) under general anaesthesia. Three to four ml of a perfluoropropane (C 3F 8) microbubble contrast agent was injected intravenously to assess the resulting myocardial perfusion defects with a commercially available Philips SONOS-7500 ultrasound system. After removal of the dog hearts, Evans blue dye was injected via the left and righ t coronary arteries to stain the myocardium at risk. In vitro anatomic measurements of myocardial mass after removal of the animals’ hearts were used as control s. Results Left ventricular (LV) mass determined by RT3DE ranged 36.7-68.9 g [mean, (54.6±9.6) g] before coronary artery ligation, and correlated highly (r=0.99) with in vitro measurement of LV mass [range, 38.9-71.1 g; mean, (55.6±9.3) g]. There was no significant difference between RT3DE and in vitro measurements of LV mass [range, 36.7-68.9 g; mean, (51.3±12.5) g. Or range, 38.9-71. 1 g; mean, (53.7±12.3) g, respectively] and under-perfused mass [range, 0-21.4 g; mean, (12.0±6.9) g. Or range, 0-19.8 g; mean, (10.8±6.3) g, respectively] after th e LAD ligation (P>0.05). Likewise, no significant difference was present between RT3DE and in vitro measurements of LV mass [range, 50.1-65.4 g; mean, (57.5±5.9 ) g. Or range, 51.5-65.8 g; mean, (57.3±6.4) g, respectively] and under-perfused m ass [range, 0-25.6 g; mean, (13.3±9.6) g. Or range, 0-22.7 g; mean, (12.8±8.1 ) g, respectively] after the LCX ligation (P>0.05). For all the animals with coronary ligation, LV mass measured by RT3DE ranged 35.9-68.6 g [mean, (54.8±10.0) g] a nd there was no significant difference between RT3DE and in vitro measurements of LV mass and under-perfused mass (P>0.05, r=0.99). Further, the under-perfused mass derived from RT3DE [range, 0-25.6 g; mean, (12.7±8.2) g] correlate d strongly with the in vitro measurements [range, 0-22.7 g; mean, (11.9±7.2) g] ( r=0.96). Conclusion RT3DE with MCE is a rapid and accurate method for estimating LV myocardial mass and quantifying perfusion defects.
文摘Background Assessment of the left ventricular (LV) and the right ventricular (RV) volumes and their functions is important for prognostic prediction and clinical decision making. We compared the accuracy for quantifying the LV and the RV volumes in vitro between conventional two-dimensional echocardiography (2DE) and real-time three-dimensional echocardiography (RT3DE) Methods The volumes of 37 rubber-models (10 regularly shaped to simulate normal LV, 7 shaped to simulate LV with symmetric aneurysm, 8 shaped to simulate LV with asymmetric aneurysm, and 12 irregularly shaped to simulate normal RV) and 10 excised canine hearts were measured by RT3DE and 2DE On RT3DE 'full volume' imaging, the inner-surfaces of the rubber-models and canine LV and RV were outlined and the volumes were measured using 2-, 4-, 8- and 16-plane methods with the RT3DE analysis software On 2DE imaging, the volumes were measured by the Simpson method The LV and RV volumes measured by drained water were served as reference values, with which we compared RT3DE and 2DE data Results In rubber models mimicking normal LV and LV with symmetric aneurysms, RT3DE results were strongly correlated with reference values ( r =0 795-0 998) and there was a good correlation between 2DE estimates and reference values ( r =0 715-0 729) There were no significant differences between RT3DE estimates, 2DE results and reference values ( P >0 05) In rubber models mimicking the RV and LV with asymmetric aneurysm, RT3DE strongly correlated with reference values ( r =0 765-0 988), but 2DE weakly correlated with reference values ( r =0 518-0 592) There were no differences between RT3DE and reference values ( P >0 05), but a significant difference between 2DE and reference values occurred ( P <0 05) For excised canine hearts, there was a strong correlation between RT3DE and reference values ( r =0 728-0 914), while 2DE showed a less obvious correlation ( r =0 502-0 615) Again, there were no significant differences between RT3DE and reference values ( P >0 05), but there was a significant difference between 2DE and reference values ( P <0 05) Conclusions RT3DE can accurately quantify LV and RV volumes and provides a new tool to evaluate LV and RV function For LV and RV measurements by RT3DE, 8-plane strategy is the optimum choice for accuracy and convenience
文摘Background Recent advances in real-time three-dimensional echocardiography (RT3DE) offer the potential to assess the left ventricular (LV) dyssynchrony simultaneously by analyzing the 17 segments time-volume curves. The purpose of this study was to test the feasibility and accuracy of RT3DE for quantitative evaluation of left ventricular systolic synchronicity. Methods Twenty-four patients with dilated cardiomyopathy (DCM) and twenty-ftve healthy volunteers were enrolled in this study. Full volume RT3DE was performed by using Philips IE33 with X3-1 probe. The global and 17-segmental time-volume curves were obtained by the on-line Qlab software (version 4.2). The time to minimal systolic volume in each segment (Tmsv) was taken to derive the following indexes of systolic asynchrony: Tmsv 16-SD, Tmsv 16-Dif, Tmsv 12-SD, Tmsv 12-Dif, Tmsv 6-SD and Tmsv 6-Dif, which meant the standard deviation or the maximal difference of Tmsv among the 16, 12 and 6 segments of the left ventricle respectively. The software also provided with each of the above parameters as a percentage of the cardiac cycle. Results Tmsv 16-SD, Tmsv 12-SD and Tmsv 6-SD were all significantly larger in the DCM group than those of the control group [Tmsv 16-SD: (52.9±40.6) ms vs (8.8±6.2) ms; Tmsv 12-SD: (29.5+30.8) ms vs (6.9±4.0) ms; Tmsv 6-SD: (28.9±34.6) ms vs (7.0±4.7)ms, all P≤0.001]. Tmsv 16-Dif, Tmsv 12-Dif and Tmsv 6-Dif were also significantly larger in the DCM group. There were close negative relations between the LVEF determined by RT3DE and each of the indexes of systolic asynchrony, among which the indexes of Tmsv-16-SD% and Tmsv-16-Dif% correlated most closely (r=-0.703 and r=-0.701, respectively). The DCM patients had significantly larger EDV and ESV, with significantly reduced LVEF compared with the healthy subjects. Conclusion RT3DE provides a simple, useful and unique approach to assess the systolic synchronicity of all the left ventricular segments simultaneously.
文摘Background The left atrial appendage (LAA) is an important source of thrombus formation. We investigated the feasibility of the recently developed real-time three-dimensional transesophageal echocardiography (RT3D-TEE) method in assessment of the morphology and function of the LAA. Methods Ninety-six consecutive patients (58 males with a mean age of (43.4±12.5) years) who were referred for 2-dimensional (2D) transesophageal echocardiography (TEE) underwent additional RT3D-TEE. LAA morphology was visualized in multiple views. Orifice size, depth, volumes and ejection fraction (EF) of the LAA, were measured. Results All the patients underwent RT3D-TEE examination without complications. Ninety-two patients (95.8%) had adequate images for visualization and quantitative analysis of the LAA. The LAA exhibited great variability with respect to relative dimensions and morphology. LAA orifice area was (3.8±1.2) cm^2 with a diameter of (2.4±0.9) cm x (1.4±0.6) cm. The mean depth of the LAA was (2.9±0.7) cm. End-diastolic volume (EDV-LAA), end-systolic volume (ESV-LAA) and EF of the LAA were (6.2±3.7) ml, (4.1±2.8) ml, and 0.35±0.16, respectively. EDV-LAA, ESV-LAA and the orifice area of the LAA in patients with atrial fibrillation (AF) were larger than those without AF, whereas the EF was smaller in the AF patients. Conclusions Defining LAA morphology and quantitative analysis of the size and function of the LAA with superior quality and resolution of images using RT3D-TEE is feasible. This technique may be an ideal tool for guidance of the LAA occlusion procedure. Determination of LAA volumes and volume-derived EF by RT3D-TEE provides new insights into the analysis of LAA function.
文摘Background Left atrial (LA) maximum volume is becoming a prognostic biomarker for left ventricular (LV) diastolic dysfunction. However, we assessed LV diastolic function by measuring LA phasic volumes using real-time threedimensional echocardiography (RT3DE) in patients with stable coronary artery disease (CAD). Methods Sixty-five stable CAD patients with normal LV ejection fraction (LVEF) were divided into three groups according to degree of coronary stenosis: control (n=15) with 〈50% stenosis as control group, mildS (n=25) with mild stenosis (50%- 70%) and severeS (n=25) with 〉70% stenosis. LA phasic volumes and function were evaluated and compared using RT3DE and two dimensional echocardiography (2DE). N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were examined. The correlations of RT3DE-derived parameters with other conventional indices were analyzed. Results Significant correlations between RT3DE and 2DE for LA volume measurements were: control, r=0.93; mildS, 1=0.94; severeS, r=0.90 (all P 〈0.05). Patients with severe coronary stenosis presented higher NT-proBNP level, indices of LA minimum volume and volume before atrial contraction, but lower LA total emptying fraction (LAEF) and LAEFpass^ve. Significant correlations of RT3DE derived LA volume indices with E/E' (r=0.695) and NF-proBNP (r=0.630) level were found. Conclusions RT3DE derived, LA indices correlate well with NT-proBNP level and may be superior to 2DE measurements for the evaluation of LV diastolic dysfunction. Enlargement of LA minimum volume in stable CAD patients without systolic dysfunction appears earlier and may be better correlated with LV diastolic function than that of LA maximum volume.
文摘Background Two-dimensional speckle tracking imaging (2D-STI) and real-time three-dimensional echocardiography (RT-3DE) have more advantages in evaluating left ventricular (LV) systolic dyssynchrony than traditional echocardiographic techniques. The study aimed to evaluate LV dyssynchrony parameters by both 2D-STI and RT-3DE, and the correlation between these two techniques. Methods A total of 43 chronic heart failure (CHF) patients and 27 healthy volunteers were enrolled. There were 23 dyssynchrony parameters selected to evaluate left ventricular systolic synchronization, involving 15 from 2D-STI and 8 from RT-3DE. Results Few of the dyssynchrony parametersshowednegative correlations with LV ejection fraction (LVEF) in the CHF group. The difference between time to peak-systolic radial strain of the anteroseptal and posterior segments at the level of papillary muscles [AS-P(RS)] from 2D-STI showed positive correlations with parts of the parameters from RT-3DE (P 〈 0.05). Conclusions LV systolic dysfunction does not correlate with dyssynchrony. Moreover, there is a weak association between 2D-STI and RT-3DE in assessment of left ventricular dyssynchrony.
文摘Left ventricular remodeling index (LVRI) was assessed in patients with hypertensive heart disease (HHD) and coronary artery disease (CAD) by real-time three-dimensional echocardiography (RT3DE). RT3DE data of 18 patients with HHD, 20 patients with CAD and 22 normal controis (NC) were acquired. Left ventricular end-diastolic volume (EDV) and left ventricular end-diastolic epicardial volume (EDVepi) were detected by RT3DE and two-dimensional echocardiography Simpson biplane method (2DE). LVRI (left ventricular mass/EDV) was calculated and compared. The results showed that LVRI measurements detected by RT3DE and 2DE showed significant differences inter-groups (P〈0.01). There was no significant difference in NC group (P〉0.05), but significant difference in HHD and CAD intra-group (P〈0.05). There was good positive correlations between LVRI detected by RT3DE and 2DE in NC and HHD groups (t=0.69, P〈0.01; r=0.68, P〈0.01), but no significant correlation in CAD group (r=0.30, P〉0.05). It was concluded that LVRI derived from RT3DE as a new index for evaluating left ventricular remodeling can provide more superiority to LVRI derived from 2DE.
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
基金This project was supported by a grant from Guangdong Provincial Natural Sciences Foundation (No 05300738)
文摘The volume-time curve change in patients with normal left ventricular (LV) diastolic function and diastolic dysfunction was evaluated by real-time three-dimensional echocardiography (RT3DE). LV diastolic dysfunction was defined by E'〈A' in pulse-wave tissue Doppler for inter-ventricular septal (IVS) of mitral annulus. In 24 patients with LV diastolic dysfunction, including 12 patients with delayed relaxation (delayed relaxation group) and 12 patients with pseudo-normal function (pseudo-normal group) and 24 normal volunteers (control group), data of full-volume image were acquired by real-time three-dimensional echocardiography and subjected to volume-time curve analysis. EDV (end-diastolic volume), ESV (end-systolic volume), LVEF (left ventricular ejection fraction), PER (peak ejection rate), PFR (peak filling rate) from RT3DE were examined in the three groups. Compared to the control group, PFR (diastolic filling index of RT3DE) was significantly reduced in the delayed relaxation group and pseudo-normal group (P〈0.05). There were no significant differences in EDV, ESV, LVEE PER (P〉0.05). It is concluded that PFR, as a diastolic filling index of RT3DE, can reflect the early diastolic function and serve as a new non-invasive, quick and accurate tool for clinical assessment of LV diastolic function.