Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are...Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.展开更多
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into th...The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.展开更多
The analytical solutions to the Schrodinger equation with the Eckart potential in arbitrary dimension D is investigated by using the Nikiforov-Uvarov method, and the centrifugal term is treated approximatively with th...The analytical solutions to the Schrodinger equation with the Eckart potential in arbitrary dimension D is investigated by using the Nikiforov-Uvarov method, and the centrifugal term is treated approximatively with the scheme of Greene and Aldrich. The discrete spectrum is obtained and the wavefunetion is expressed in terms of the Jacobi polynomial or the hypergeometric function. Some special cases of the Eckart potential are discussed for D=3, and the resulting energy equation agrees well with that obtained by other methods.展开更多
The shape invariant symmetry of the Trigonometric Rosen-Morse and Eckart potentials has been studied through realization of so(3) and so(2, 1) Lie algebras respectively. In this work, by using the free particle ei...The shape invariant symmetry of the Trigonometric Rosen-Morse and Eckart potentials has been studied through realization of so(3) and so(2, 1) Lie algebras respectively. In this work, by using the free particle eigenfunction, we obtain continuous spectrum of these potentials by means of their shape invariance symmetry in an algebraic method.展开更多
We obtain analytical expressions for the energy eigenvalues of both the Schioberg and Eckart potentials using an approximation of the centrifugal term. In order to determine the l-states solutions, we use the Feynman ...We obtain analytical expressions for the energy eigenvalues of both the Schioberg and Eckart potentials using an approximation of the centrifugal term. In order to determine the l-states solutions, we use the Feynman path integral approach to quantum mechanics. We show that by performing nonlinear space-time transformations in the radial path integral, we can derive a transformation formula that relates the original path integral to the Green function of a new quantum solvable system. The explicit expression of bound state energy is obtained and the associated eigenfunctions are given in terms of hypergeometric functions. We show that the Eckart potential can be derived from the Schioberg potential. The obtained results are compared to those produced by other methods and are found to be consistent.展开更多
Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponen...Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtained explicitly.展开更多
The approximate analytical solutions of the Schrodinger equation for the Eckart potential are presented for the arbitrary angular momentum by using a new approximation of the centrifugal term. The energy eigenvalues a...The approximate analytical solutions of the Schrodinger equation for the Eckart potential are presented for the arbitrary angular momentum by using a new approximation of the centrifugal term. The energy eigenvalues and the corresponding wavefunctions are obtained for different values of screening parameter. The numerical examples are presented and the results are in good agreement with the values in the literature. Three special cases, i.e., s-wave, ξ= λ=1, and β=0, are investigated.展开更多
We study the d-dimensional Schrdinger equation for Eckart plus modified deformed Hylleraas potentials using the generalized parametric form of Nikiforov-Uvarov method.We obtain energy eigenvalues and the corresponding...We study the d-dimensional Schrdinger equation for Eckart plus modified deformed Hylleraas potentials using the generalized parametric form of Nikiforov-Uvarov method.We obtain energy eigenvalues and the corresponding wave function expressed in terms of a Jacobi polynomial.We also discuss two special cases of this potential comprised of the Hulthen potential and the Rosen-Morse potential in three dimensions.Numerical results are also computed for the energy spectrum and the potentials.展开更多
文摘Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.
基金supported by the Higher Education Project(Grant No.698/UN27.11/PN/2015)
文摘The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.
基金Supported by the National Natural Science Foundation of China under Grant No 14101020155the Fundamental Research Funds for the Central Universities under Grant No GK201402012
文摘The analytical solutions to the Schrodinger equation with the Eckart potential in arbitrary dimension D is investigated by using the Nikiforov-Uvarov method, and the centrifugal term is treated approximatively with the scheme of Greene and Aldrich. The discrete spectrum is obtained and the wavefunetion is expressed in terms of the Jacobi polynomial or the hypergeometric function. Some special cases of the Eckart potential are discussed for D=3, and the resulting energy equation agrees well with that obtained by other methods.
文摘The shape invariant symmetry of the Trigonometric Rosen-Morse and Eckart potentials has been studied through realization of so(3) and so(2, 1) Lie algebras respectively. In this work, by using the free particle eigenfunction, we obtain continuous spectrum of these potentials by means of their shape invariance symmetry in an algebraic method.
基金Project supported by CNEPRU(Grant No.D03920130021)
文摘We obtain analytical expressions for the energy eigenvalues of both the Schioberg and Eckart potentials using an approximation of the centrifugal term. In order to determine the l-states solutions, we use the Feynman path integral approach to quantum mechanics. We show that by performing nonlinear space-time transformations in the radial path integral, we can derive a transformation formula that relates the original path integral to the Green function of a new quantum solvable system. The explicit expression of bound state energy is obtained and the associated eigenfunctions are given in terms of hypergeometric functions. We show that the Eckart potential can be derived from the Schioberg potential. The obtained results are compared to those produced by other methods and are found to be consistent.
基金Project supported by Erciyes University-FBA-09-999
文摘Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtained explicitly.
基金supported by the Scientific and Technological Council of Turkey TUBITAK under the Integrated PhD Program fellowship
文摘The approximate analytical solutions of the Schrodinger equation for the Eckart potential are presented for the arbitrary angular momentum by using a new approximation of the centrifugal term. The energy eigenvalues and the corresponding wavefunctions are obtained for different values of screening parameter. The numerical examples are presented and the results are in good agreement with the values in the literature. Three special cases, i.e., s-wave, ξ= λ=1, and β=0, are investigated.
文摘We study the d-dimensional Schrdinger equation for Eckart plus modified deformed Hylleraas potentials using the generalized parametric form of Nikiforov-Uvarov method.We obtain energy eigenvalues and the corresponding wave function expressed in terms of a Jacobi polynomial.We also discuss two special cases of this potential comprised of the Hulthen potential and the Rosen-Morse potential in three dimensions.Numerical results are also computed for the energy spectrum and the potentials.