At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attribu...At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.展开更多
针对区域内大型用电负荷转移的问题,本研究采用关联规则数据挖掘算法中的Ecalt算法和Apriori算法相结合的方式,找到属性项集出现频率较高并按照同字典序相反的规则构建等价关系,提出了Eclat-N算法对电力部门的大型用户的用电负荷优化分...针对区域内大型用电负荷转移的问题,本研究采用关联规则数据挖掘算法中的Ecalt算法和Apriori算法相结合的方式,找到属性项集出现频率较高并按照同字典序相反的规则构建等价关系,提出了Eclat-N算法对电力部门的大型用户的用电负荷优化分析。通过算法的仿真结果表明:大部分用电负荷由用电负荷高峰期转移至用电低价区域时段,优化前工作方式价格峰值用电负荷10.79k Wh,对于2.5 k W转移功率上限优化用时1 h转移时限为6.1 k Wh,而对于用时1 h转移时限仅为3.9 k Wh。通过对全网的用电负荷能效进行优化可提高整体的用电效率,从而起到节能减排的效果。展开更多
基金supported by the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2014J051 and No.ZYGX2014J066Science and Technology Projects in Sichuan Province under Grants No.2015JY0178,No.2016FZ0002,No.2014GZ0109,No.2015KZ002 and No.2015JY0030China Postdoctoral Science Foundation under Grant No.2015M572464
文摘At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.
文摘针对区域内大型用电负荷转移的问题,本研究采用关联规则数据挖掘算法中的Ecalt算法和Apriori算法相结合的方式,找到属性项集出现频率较高并按照同字典序相反的规则构建等价关系,提出了Eclat-N算法对电力部门的大型用户的用电负荷优化分析。通过算法的仿真结果表明:大部分用电负荷由用电负荷高峰期转移至用电低价区域时段,优化前工作方式价格峰值用电负荷10.79k Wh,对于2.5 k W转移功率上限优化用时1 h转移时限为6.1 k Wh,而对于用时1 h转移时限仅为3.9 k Wh。通过对全网的用电负荷能效进行优化可提高整体的用电效率,从而起到节能减排的效果。