Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development.Understanding the spatial-temporal distribution and variation trend of eco-envir...Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development.Understanding the spatial-temporal distribution and variation trend of eco-environmental quality is essential for environmental protection and ecological balance.The remote sensing ecological index(RSEI)can quickly and objectively quantify eco-environmental quality and has been extensively utilized in regional ecological environment assessment.In this paper,Moderate Resolution Imaging Spectroradiometer(MODIS)images during the growing period(July-September)from 2000 to 2020 were obtained from the Google Earth Engine(GEE)platform to calculate the RSEI in the three northern regions of China(the Three-North region).The Theil-Sen median trend method combined with the Mann-Kendall test was used to analyze the spatial-temporal variation trend of eco-environmental quality,and the Hurst exponent and the Theil-Sen median trend were superimposed to predict the future evolution trend of eco-environmental quality.In addition,ten variables from two categories of natural and anthropogenic factors were analyzed to determine the drivers of the spatial differentiation of eco-environmental quality by the geographical detector.The results showed that from 2000 to 2020,the RSEI in the Three-North region exhibited obvious regional characteristics:the RSEI values in Northwest China were generally between 0.2 and 0.4;the RSEI values in North China gradually increased from north to south,ranging from 0.2 to 0.8;and the RSEI values in Northeast China were mostly above 0.6.The average RSEI value in the Three-North region increased at an average growth rate of 0.0016/a,showing the spatial distribution characteristics of overall improvement and local degradation in eco-environmental quality,of which the areas with improved,basically stable and degraded eco-environmental quality accounted for 65.39%,26.82%and 7.79%of the total study area,respectively.The Hurst exponent of the RSEI ranged from 0.20 to 0.76 and the future trend of eco-environmental quality was generally consistent with the trend over the past 21 years.However,the areas exhibiting an improvement trend in eco-environmental quality mainly had weak persistence,and there was a possibility of degradation in eco-environmental quality without strengthening ecological protection.Average relative humidity,accumulated precipitation and land use type were the dominant factors driving the spatial distribution of eco-environmental quality in the Three-North region,and two-factor interaction also had a greater influence on eco-environmental quality than single factors.The explanatory power of meteorological factors on the spatial distribution of eco-environmental quality was stronger than that of topographic factors.The effect of anthropogenic factors(such as population density and land use type)on eco-environmental quality gradually increased over time.This study can serve as a reference to protect the ecological environment in arid and semi-arid regions.展开更多
Taking the Technical Specifications of Eco-environmental Quality Assessment enacted by the State Environmental Protection Administration in 2006 as the conceptual framework model and improving some indices and weights...Taking the Technical Specifications of Eco-environmental Quality Assessment enacted by the State Environmental Protection Administration in 2006 as the conceptual framework model and improving some indices and weights in the regulation,the eco-environmental assessment index system for Manas River Basin was established,and the eco-environmental quality index (EQI) of this basin from 1976 to 2005 was assessed based on the related data.The results indicated that the ecological quality index increased to 48.26 from 34.44 during 1976-2005.The biologic abundance index,vegetation coverage index and land deterioration index decreased,while there was an increase in water reticulation density index,environmental quality index and pollution load index,so the improvement and deterioration of the ecological environment coexisted in the basin.On the whole,the poor state of the basin ecological environment had turned into a general state,and the eco-environmental quality was developed towards favorable circle.The results also showed that the improved calculating method of EQI accorded with the actual situation of the research area.展开更多
Natural condition in Western China is relatively poor and regional economy level is low. The ecological environment has been seriously damaged by population growth and over-exploitation of natural resources. It is ver...Natural condition in Western China is relatively poor and regional economy level is low. The ecological environment has been seriously damaged by population growth and over-exploitation of natural resources. It is very important for coordinating the regional development and safeguarding ecological security to discuss the eco-environment evolution trend and its sustainable development strategies in Western China. Based on analyzing documents and relative research,the changes of main ecological and environmental problems in the western region,such as degradation of forest and grassland ecosystems,shrinkage of wetland,desertification,water and soil erosion,etc. were synthetically discussed. Then,according to the development trend,some countermeasures for eco-environment protection and rehabilitation and sustainable development were proposed.展开更多
Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were a...Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.展开更多
Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-1...Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-10 cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002. The soil bulk density, porosity, stable infiltration rate, aggregate distribution and particle-size distribution were analyzed by the routine methods in room, and the features and effects on eco-environment of soil aggregation were studied. The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil, and the soil structure under the clear-cutting forest is the worst, the others are ranked between them. The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River.展开更多
With the rapid economic development in the surrounding coastal zone, more and more wastewater has been discharged into the Bohai Bay. And with the scale of coastal exploitation being expanded year by year, the eco-env...With the rapid economic development in the surrounding coastal zone, more and more wastewater has been discharged into the Bohai Bay. And with the scale of coastal exploitation being expanded year by year, the eco-environment of the Bohai Bay has been confronted with great pressure. In this paper, the main problems in the eco-environment of the Bohai Bay were summarized firstly. Red tides occurred more frequently and more seriously; salinity rose in inshore area, the fishery resources degenerated; all the above indicate that the eco-environment of the Bohai Bay is under a severe situation Next, to make a concrete study of the existing status of the Bohai Bay, the eco-environment index system was set up. Then the principal components analytic method and grey relation method were adopted to carry on a comprehensive analysis on the status. The results show that serious pollution of inorganic nitrogen and active phosphate, and poor species diversity are the main presentations of the bad quality of the inshore aquatic eco-environment of the Bohai Bay, which is mainly induced by the massive discharge of pollutant from land and the overexploitation in the surrounding coastal zone. At last, the variations of hydrodynamic characteristics and the pollutant transport caused by coastal exploitations such as reclamation and seawater desalination are analyzed. The results show that reclamation in coastal water not only decreases the tidal prism and weakens the tidal current action, but also influences the pollution distribution in the coastal water. The seawater desalination project would cause tremendous influence to the aquatic eco-environment of the Bohai Bay as the pollutant's pulse impact. Much more attention would be paid to the reasonable use of the coastal zone resources and the control of pollution from land-based sources.展开更多
Through analyzing the form, materials, building techniques of vernacular dwellings in Jinzhai County, Anhui Province, this study tries to explore the influence of agricultural eco-environment on the form of folk house...Through analyzing the form, materials, building techniques of vernacular dwellings in Jinzhai County, Anhui Province, this study tries to explore the influence of agricultural eco-environment on the form of folk houses, points out that vernacular dwellings are fully combined with local traditional agricultural environment from site selection, spatial form, architectural style, building materials and detail designs, which unifies the economic and environmental benefits of vernacular dwellings.展开更多
Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable devel...Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable development. With ur- ban development, and destruction on natural environment, however, the issue of water and soil losses has become a serious problem, affecting people's life and production. The research, therefore, explored the role of water and soil conservation in ecological civilization construction, including bomprehensive treatment of water storage and sand reduction, improving agricultural structure and advancing rural econ- omy, relieving the conflict between supply and demand of water resources, improv- ing eco-environment in mountainous regions and accelerating eco-construction.展开更多
Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theor...Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theory, interactive promotion theory and coupling symbiosis theory. Harmonizing the relationship between urbanization and eco-environment is not only an important proposition for the national development plan but also the only way to promote healthy urbanization. Based on an analysis of urbanization process and its relationship with the eco-environment, this article analyzes interactive coercing effects between urbanization and eco-environment from three perspectives of population urbanization, economic urbanization and spatial urbanization, respectively, and analyzes risk effects of the interactive coercion. Further, it shows six basic laws followed by interactive coercion between urbanization and eco-environment, namely, coupling fission law, dynamic hierarchy law, stochastic fluctuation law, non-linear synergetic law, threshold value law and forewarning law, and divides the interactive coercing process into five stages, namely, low-level coordinate, antagonistic, break-in, ameliorative and high-grade coordinate. Based on the geometric derivation, the interactive coercing relationship between urbanization and eco-environment is judged to be non-linear and it can be explained by a double-exponential function formed by the combination of power and exponential functions. Then, the evolutionary types of the interactive coercing relationship are divided into nine ones: rudimentary coordinating, ecology-dominated, synchronal coordinating, urbanization lagging, stepwise break-in, exorbitant urbanization, fragile ecology, rudimentary break-in and unsustainable types. Finally, based on an interactive coercion model, the degree of interactive coercion can be examined, and then, an evolutionary cycle can be divided into four phases, namely rudimentary symbiosis, harmonious development, utmost increasing and spiral type rising. The study results offer a scientific decision-making of healthy urbanization for achieving the goal of eco-environment protection and promoting urbanization.展开更多
Land cover in the Chinese Loess Plateau has undergone dramatic changes since the late 1980s.Revealing the trend in land cover change and eco-environmental quality response of different geomorphic units in this stage i...Land cover in the Chinese Loess Plateau has undergone dramatic changes since the late 1980s.Revealing the trend in land cover change and eco-environmental quality response of different geomorphic units in this stage is a realistic requirement for promoting sustainable development of the Chinese Loess Plateau.Based on the data of geomorphic units and land cover in 1990,2000,2010 and 2018 of the Chinese Loess Plateau,we studied the trend of land cover change and eco-environmental quality response of different geomorphic units by using a significance index of land cover change,a proportion index of land cover change and an eco-environmental response model.The results indicated that from 1990 to 2018,the areas of forestland and construction land substantially increased,whereas those of cropland,grassland,wetland and unused land considerably decreased.Land cover change exhibited large geomorphic differences,and the main conversion of land cover was from cropland into other land types.Unstable trend of land cover change in the loess tablelands and sandy loess hills declined,whereas the unstable trends in the other geomorphic units enhanced.Eco-environmental quality varied among different geomorphic units.The expansion of construction land and degradation of forestland,grassland and wetland resulted in the deterioration of eco-environmental quality.The conversion of cropland and unused land into forestland and grassland,and the conversion of grassland into forestland were the main factors that drove the improvement of eco-environmental quality.The findings of this study may provide theoretical reference and support decision making for the optimization of land use structure and the improvement of eco-environmental quality on the Chinese Loess Plateau.展开更多
Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pum...Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pumping have caused serious environmental problems and limited economic development in many regions all around the world. In this paper, a framework for quantitatively evaluating development sustainability was established with water-related eco-environmental carrying capacity (EECC) as the core measure. As a case study, the developed approach was applied to data of the Haihe River Basin, China, during 1998 through 2007. The overall sustainable development degree (SDD) is determined to be 0.39, suggesting that this rate of development is not sustainable. Results of scenario analysis revealed that overshoot, or resource over- exploitation, of the Basin's EECC is about 20% for both population and economy. Based on conditions in the study area in 2007, in order to achieve sustainable development, i.e., SDD〉0.70 in this study, the EECC could support a population of 108 million and gross domestic product (GDP) of 2.72 trillion CNY. The newly developed approach in quantifying ecoenvironmental carrying capacity is anticipated to facilitate sustainable development oriented resource management in waterdeficient areas.展开更多
Mongolia is an important country in the Economic Corridor of China-Mongolia-Russia, a deep understanding of the coupling relationship between urbanization and the eco-environment in Mongolia is meaningful to achieve g...Mongolia is an important country in the Economic Corridor of China-Mongolia-Russia, a deep understanding of the coupling relationship between urbanization and the eco-environment in Mongolia is meaningful to achieve green development of the Belt and Road. The entropy method and coupling coordination degree model were integrated to evaluate the coupling coordination degree between urbanization and the eco-environment in Mongolia during 2000-2016. The results showed that the coupling coordination degree between urbanization and the eco-environment in Mongolia was generally at the stage of seriously unbalanced development, and that the main contributor of the urbanization and the eco-environment subsystem were demographic urbanization and eco-environment endowment, respectively. The southern part of Mongolia central zone should be paid more attention due to the lower degree of coupling coordination between urbanization and the eco-environment. To promote the healthy urbanization development in Mongolia, six-layer eco-city establishing green development pattern is proposed to provide scientific support for Mongolia.展开更多
Using remote sensing(RS)data and geographical information system(GIS),eco-environmental vulnerability and its changes were analyzed for the Yellow River Basin,China.The objective of this study was to improve our under...Using remote sensing(RS)data and geographical information system(GIS),eco-environmental vulnerability and its changes were analyzed for the Yellow River Basin,China.The objective of this study was to improve our understanding of eco-environmental changes so that a strategy of sustainable land use could be established.An environmental numerical model was developed using spatial principal component analysis(SPCA)model.The model contains twelve factors that include variables of land use,soil erosion,topography,climate,and vegetation.Using this model,synthetic eco- environmental vulnerability index(SEVI)was computed for 1990 and 2000 for the Yellow River Basin.The SEVI was classified into six levels,potential,slight,light,medium,heavy,and very heavy,following the natural breaks classification. The eco-environmental vulnerability distribution and its changes over the ten years from 1990 to 2000 were analyzed and the driving factors of eco-environmental changes were investigated.The results show that the eco-environmental vulnerability in the study area was at medium level,and the eco-environmental quality had been gradually improved on the whole.However,the eco-environmental quality had become worse over the ten years in some regions.In the study area,population growth,vegetation degradation,and governmental policies for eco-environmental protection were found to be the major factors that caused the eco-environmental changes over the ten years.展开更多
In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a ...In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a case study area for investigation and quantitative evaluation. Technologies of remote sensing (RS), global positioning system (GPS), geographic information system (GIS), and other statistical methods were employed to implement. Results showed that: (1) During the recent twenty years, the areas of forest lands, grasslands and water were reduced, whereas the areas of other types were enlarged. Parts of forest lands, grasslands, and waters had become farmlands, and about 31.5% of the changed grasslands transferred into unused lands. The newly increased farmlands mainly came from grasslands and unused lands. And the newly increased construction lands mainly came from grasslands and farmlands. (2) Regional eco- environmental quality decreased by 12.6%, for which the land degradation (especially the meadow degeneration) and the developing of the cultivated land were mainly responsible, and their contributions to the regional eco-environment changes were 51.84 and 23.63% respectively. (3) The tendency of LUCC and the eco-environment response to LUCC displayed spatial heterogeneity. It can be concluded that the present agricultural production mode was not sustainable in farming-pastoral zone of northern China. Land degradation, especially meadow degradation induced by over-trampling and overgrazing, and developing of cultivated land were mainly responsible for regional eco-environment deterioration. Changing the cultivated land to forest or grass, however, can relieve deterioration of local eco-environment to some extents. And in the farming-pastoral zone in the northern China, evaluating regional eco-environment responses to LUCC was very necessary due to its fragile eco-environments.展开更多
By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implicat...By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized.展开更多
Studying the change of resources consumption and eco-environmental carrying capacity are of importance to the sustainable development of urbanization.Based on the China's economic and social statistical data from ...Studying the change of resources consumption and eco-environmental carrying capacity are of importance to the sustainable development of urbanization.Based on the China's economic and social statistical data from 1950 to 2006,the ecological footprint,eco-logical footprint intensity,ecological deficit and surplus,and eco-environment quality com-prehensive index are calculated,the correlation between urbanization and eco-environmental change is analyzed and the eco-environmental guarantee for China's urbanization in 2030 is forecasted.The major results could be summarized as follows:(1) there is a positive linear relation between urbanization and ecological footprint,negative linear relation between ur-banization and ecological footprint intensity,ecological deficit and surplus and the negative exponential relation between urbanization and eco-environment quality comprehensive index.(2) By 2030,the urbanization level will reach 61.32%,the ecological deficit will increase to 42.2866×108 hm2 and the eco-environment quality comprehensive index will drop to 0.3016 on the condition that the total quantity ecological footprint achieves 55.9348×108 hm2.(3) Under the existing urban development pattern,the ecological overload will be more serious in the next 24 years.Constructing the reasonable industrial structure and establishing the intensive resources utilization system to alleviate the eco-environmental pressure are the tough challenges in China's urbanization process.展开更多
Although the Songnen Plain in the northeastern China was developed relatively late in the temperate zone of the world, its eco-environment has changed greatly. This paper analyzes the changes of land cover and the rat...Although the Songnen Plain in the northeastern China was developed relatively late in the temperate zone of the world, its eco-environment has changed greatly. This paper analyzes the changes of land cover and the rates and trends ofdesertification during the past 100 years in the Songnen Plain. According to the macroscopic analysis, we find that the eco-environment in the plain has reached to the threshold of catastrophic change since the 1950s. The Thom Needle Catastrophic Model was used to determine and validate this conclusion. Human activities, including large-scale construction projects, such as huge dams and dikes, and excessive grazing were the primary factors contributing to regional eco-environmental catastrophe. And irrational reclamation of the wilderness also affected the eco-environmental change. The results reveal the complex human-land interactions.展开更多
The Ecological-living-productive land(ELPL)classification system was proposed in an effort to steer China's land pattern to an ecological-centered path,with the development model shifting from a single function in...The Ecological-living-productive land(ELPL)classification system was proposed in an effort to steer China's land pattern to an ecological-centered path,with the development model shifting from a single function into more integrated multifunction land use.The focus is coordinating the man-land contradictions and developing an intensive,efficient and sustainable land use policy in an increasingly tense relationship between humans and nature.Driven by socioeconomic change and rapid population growth,many cities are undergoing urban sprawl,which involves the consumption of cropland and ecological land and threatens the ecological balance.This paper aims to quantitatively analyze the critical effects of ELPL changes on eco-environmental quality according to land use classification based on leading function of ecology,living and production from 1990 to 2015 with a case study of Xining City.Also,four future land use scenarios were simulated for 2030 using the Future Land Use Simulation(FLUS)model that couples human and natural effects.Our results show a decrease in productive land(PL)and an increase in ecological land(EL)and living land(LL)in Xining City.Forestry ecological land(FEL)covered the top largest proportion;agriculture productive land(APL)showed the greatest reduction and urban and rural living land(U-RLL)presented a dramatic increase.The eco-environmental quality improved in 1990-2010,mainly affected by the conversion of APL to FEL and GEL.However,the encroachment of U-RLL into APL,other ecological land(OEL)and FEL was the main contributor to the decline in eco-environmental quality in 2010-2015 as well as the primary reason for the increase area of lower-quality.The Harmonious Development(HD)-Scenario,characterized by a rational allocation of LL and PL and a better eco-environment,would have implications for planning and monitoring future management of ELPL,and may represent a valuable reference for local policy-makers.展开更多
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper....Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×10 4 km 2 . Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×10 4 km 2 . Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.展开更多
The process of urbanization affects the urban warming.The change of urban warming was investigated by several urbanization factors in Changsha,China.The data of surface temperature(minimum,maximum and mean) of Changsh...The process of urbanization affects the urban warming.The change of urban warming was investigated by several urbanization factors in Changsha,China.The data of surface temperature(minimum,maximum and mean) of Changsha were analyzed to understand the possible effects of urbanization on the climate of this region owing to the population growth,built-up area expansion and energy consumption increases.The weights of these three factors were calculated by the analytical hierarchy process(AHP).Then,three weights were simulated with nonlinear method to obtain the urbanization development rate which was utilized to reveal the influence of the urbanization factors on the surface temperature.The result shows that there is a significant upward trend in the urban temperatures of Changsha.The temperature increase seems to be closely related to the rate of urbanization between 1993 and 2008,and there is an evidential increase trend of the influence on urban temperature by urbanization during 16 years.It is a quantifiable approach measuring the relationship between urbanization and urban eco-environment,and can be applied for the urban sustainability.展开更多
基金supported by the National Natural Science Foundation of China(31971578)the Scientific Research Fund of Changsha Science and Technology Bureau(kq2004095)+2 种基金the National Bureau to Combat Desertification,State Forestry Administration of China(101-9899)the Training Fund of Young Professors from Hunan Provincial Education Department(90102-7070220090001)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220707)。
文摘Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development.Understanding the spatial-temporal distribution and variation trend of eco-environmental quality is essential for environmental protection and ecological balance.The remote sensing ecological index(RSEI)can quickly and objectively quantify eco-environmental quality and has been extensively utilized in regional ecological environment assessment.In this paper,Moderate Resolution Imaging Spectroradiometer(MODIS)images during the growing period(July-September)from 2000 to 2020 were obtained from the Google Earth Engine(GEE)platform to calculate the RSEI in the three northern regions of China(the Three-North region).The Theil-Sen median trend method combined with the Mann-Kendall test was used to analyze the spatial-temporal variation trend of eco-environmental quality,and the Hurst exponent and the Theil-Sen median trend were superimposed to predict the future evolution trend of eco-environmental quality.In addition,ten variables from two categories of natural and anthropogenic factors were analyzed to determine the drivers of the spatial differentiation of eco-environmental quality by the geographical detector.The results showed that from 2000 to 2020,the RSEI in the Three-North region exhibited obvious regional characteristics:the RSEI values in Northwest China were generally between 0.2 and 0.4;the RSEI values in North China gradually increased from north to south,ranging from 0.2 to 0.8;and the RSEI values in Northeast China were mostly above 0.6.The average RSEI value in the Three-North region increased at an average growth rate of 0.0016/a,showing the spatial distribution characteristics of overall improvement and local degradation in eco-environmental quality,of which the areas with improved,basically stable and degraded eco-environmental quality accounted for 65.39%,26.82%and 7.79%of the total study area,respectively.The Hurst exponent of the RSEI ranged from 0.20 to 0.76 and the future trend of eco-environmental quality was generally consistent with the trend over the past 21 years.However,the areas exhibiting an improvement trend in eco-environmental quality mainly had weak persistence,and there was a possibility of degradation in eco-environmental quality without strengthening ecological protection.Average relative humidity,accumulated precipitation and land use type were the dominant factors driving the spatial distribution of eco-environmental quality in the Three-North region,and two-factor interaction also had a greater influence on eco-environmental quality than single factors.The explanatory power of meteorological factors on the spatial distribution of eco-environmental quality was stronger than that of topographic factors.The effect of anthropogenic factors(such as population density and land use type)on eco-environmental quality gradually increased over time.This study can serve as a reference to protect the ecological environment in arid and semi-arid regions.
基金Supported by National Key Technology R&D Program (2007BAC17B01)Major State Basic Research Development Program of China (973 Program) (2009CB825100)
文摘Taking the Technical Specifications of Eco-environmental Quality Assessment enacted by the State Environmental Protection Administration in 2006 as the conceptual framework model and improving some indices and weights in the regulation,the eco-environmental assessment index system for Manas River Basin was established,and the eco-environmental quality index (EQI) of this basin from 1976 to 2005 was assessed based on the related data.The results indicated that the ecological quality index increased to 48.26 from 34.44 during 1976-2005.The biologic abundance index,vegetation coverage index and land deterioration index decreased,while there was an increase in water reticulation density index,environmental quality index and pollution load index,so the improvement and deterioration of the ecological environment coexisted in the basin.On the whole,the poor state of the basin ecological environment had turned into a general state,and the eco-environmental quality was developed towards favorable circle.The results also showed that the improved calculating method of EQI accorded with the actual situation of the research area.
基金Supported by National Key Technology R&D Program during the 11th Five-year Plan (2006BAC01A01)~~
文摘Natural condition in Western China is relatively poor and regional economy level is low. The ecological environment has been seriously damaged by population growth and over-exploitation of natural resources. It is very important for coordinating the regional development and safeguarding ecological security to discuss the eco-environment evolution trend and its sustainable development strategies in Western China. Based on analyzing documents and relative research,the changes of main ecological and environmental problems in the western region,such as degradation of forest and grassland ecosystems,shrinkage of wetland,desertification,water and soil erosion,etc. were synthetically discussed. Then,according to the development trend,some countermeasures for eco-environment protection and rehabilitation and sustainable development were proposed.
基金Supported by Social Science Fund in Jiangsu Province " Study on evolution of Yellow River s flooding into the Huihe River and natural systems in Northern Jiangsu" (09LSA001)~~
文摘Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.
基金This study was supported by the Knowledge innovation project of Chinese Academy of Sciences (KZCX2-Sw-319)
文摘Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-10 cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002. The soil bulk density, porosity, stable infiltration rate, aggregate distribution and particle-size distribution were analyzed by the routine methods in room, and the features and effects on eco-environment of soil aggregation were studied. The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil, and the soil structure under the clear-cutting forest is the worst, the others are ranked between them. The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River.
基金supported by the National Natural Science Foundation of China(Grant No:50479049)the Support Plan of Science and Technology of Tianjin(Grant No.07ZCGYSH01700)+1 种基金the Natural Science Foundation of Tianjin(Grant No.07JCZDJC10700)Global Environmental Foundation(Grant No.TF053183)
文摘With the rapid economic development in the surrounding coastal zone, more and more wastewater has been discharged into the Bohai Bay. And with the scale of coastal exploitation being expanded year by year, the eco-environment of the Bohai Bay has been confronted with great pressure. In this paper, the main problems in the eco-environment of the Bohai Bay were summarized firstly. Red tides occurred more frequently and more seriously; salinity rose in inshore area, the fishery resources degenerated; all the above indicate that the eco-environment of the Bohai Bay is under a severe situation Next, to make a concrete study of the existing status of the Bohai Bay, the eco-environment index system was set up. Then the principal components analytic method and grey relation method were adopted to carry on a comprehensive analysis on the status. The results show that serious pollution of inorganic nitrogen and active phosphate, and poor species diversity are the main presentations of the bad quality of the inshore aquatic eco-environment of the Bohai Bay, which is mainly induced by the massive discharge of pollutant from land and the overexploitation in the surrounding coastal zone. At last, the variations of hydrodynamic characteristics and the pollutant transport caused by coastal exploitations such as reclamation and seawater desalination are analyzed. The results show that reclamation in coastal water not only decreases the tidal prism and weakens the tidal current action, but also influences the pollution distribution in the coastal water. The seawater desalination project would cause tremendous influence to the aquatic eco-environment of the Bohai Bay as the pollutant's pulse impact. Much more attention would be paid to the reasonable use of the coastal zone resources and the control of pollution from land-based sources.
基金Sponsored by Anhui Provincial Social Science Foundation (2009AHZS0185)Scientific Research Plan of the Ministry of Housing and Urban-Rural Development (2010-R2-21) ~~
文摘Through analyzing the form, materials, building techniques of vernacular dwellings in Jinzhai County, Anhui Province, this study tries to explore the influence of agricultural eco-environment on the form of folk houses, points out that vernacular dwellings are fully combined with local traditional agricultural environment from site selection, spatial form, architectural style, building materials and detail designs, which unifies the economic and environmental benefits of vernacular dwellings.
基金Supported by the Planning Subject of‘The Twelfth Five-Year-Plan’in National Science and Technology for The Rural Development in China(2011BAD31B01)~~
文摘Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable development. With ur- ban development, and destruction on natural environment, however, the issue of water and soil losses has become a serious problem, affecting people's life and production. The research, therefore, explored the role of water and soil conservation in ecological civilization construction, including bomprehensive treatment of water storage and sand reduction, improving agricultural structure and advancing rural econ- omy, relieving the conflict between supply and demand of water resources, improv- ing eco-environment in mountainous regions and accelerating eco-construction.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40335049),National Natural Science Foundation of China (No. 40971101)
文摘Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theory, interactive promotion theory and coupling symbiosis theory. Harmonizing the relationship between urbanization and eco-environment is not only an important proposition for the national development plan but also the only way to promote healthy urbanization. Based on an analysis of urbanization process and its relationship with the eco-environment, this article analyzes interactive coercing effects between urbanization and eco-environment from three perspectives of population urbanization, economic urbanization and spatial urbanization, respectively, and analyzes risk effects of the interactive coercion. Further, it shows six basic laws followed by interactive coercion between urbanization and eco-environment, namely, coupling fission law, dynamic hierarchy law, stochastic fluctuation law, non-linear synergetic law, threshold value law and forewarning law, and divides the interactive coercing process into five stages, namely, low-level coordinate, antagonistic, break-in, ameliorative and high-grade coordinate. Based on the geometric derivation, the interactive coercing relationship between urbanization and eco-environment is judged to be non-linear and it can be explained by a double-exponential function formed by the combination of power and exponential functions. Then, the evolutionary types of the interactive coercing relationship are divided into nine ones: rudimentary coordinating, ecology-dominated, synchronal coordinating, urbanization lagging, stepwise break-in, exorbitant urbanization, fragile ecology, rudimentary break-in and unsustainable types. Finally, based on an interactive coercion model, the degree of interactive coercion can be examined, and then, an evolutionary cycle can be divided into four phases, namely rudimentary symbiosis, harmonious development, utmost increasing and spiral type rising. The study results offer a scientific decision-making of healthy urbanization for achieving the goal of eco-environment protection and promoting urbanization.
基金funded by the Special Project of the Ministry of Science and Technology of China(2014FY210100)the National Key Research and Development Program of China(2018YFD1100101)the National Natural Science Foundation of China(41971204)
文摘Land cover in the Chinese Loess Plateau has undergone dramatic changes since the late 1980s.Revealing the trend in land cover change and eco-environmental quality response of different geomorphic units in this stage is a realistic requirement for promoting sustainable development of the Chinese Loess Plateau.Based on the data of geomorphic units and land cover in 1990,2000,2010 and 2018 of the Chinese Loess Plateau,we studied the trend of land cover change and eco-environmental quality response of different geomorphic units by using a significance index of land cover change,a proportion index of land cover change and an eco-environmental response model.The results indicated that from 1990 to 2018,the areas of forestland and construction land substantially increased,whereas those of cropland,grassland,wetland and unused land considerably decreased.Land cover change exhibited large geomorphic differences,and the main conversion of land cover was from cropland into other land types.Unstable trend of land cover change in the loess tablelands and sandy loess hills declined,whereas the unstable trends in the other geomorphic units enhanced.Eco-environmental quality varied among different geomorphic units.The expansion of construction land and degradation of forestland,grassland and wetland resulted in the deterioration of eco-environmental quality.The conversion of cropland and unused land into forestland and grassland,and the conversion of grassland into forestland were the main factors that drove the improvement of eco-environmental quality.The findings of this study may provide theoretical reference and support decision making for the optimization of land use structure and the improvement of eco-environmental quality on the Chinese Loess Plateau.
基金funding support from the Key Knowledge Innovation Project of the Chinese Academy of Sciences(Kzcx2-yw-126)the Key Technology R&D Program of China(2006BAB14B07)the National Natural Sciences Foundation of China(40730632,40701027)
文摘Quantitative assessment of development sustainability could be a challenge to regional management and planning, especially for areas facing great risks of water shortage. Surface-water decline and groundwater over-pumping have caused serious environmental problems and limited economic development in many regions all around the world. In this paper, a framework for quantitatively evaluating development sustainability was established with water-related eco-environmental carrying capacity (EECC) as the core measure. As a case study, the developed approach was applied to data of the Haihe River Basin, China, during 1998 through 2007. The overall sustainable development degree (SDD) is determined to be 0.39, suggesting that this rate of development is not sustainable. Results of scenario analysis revealed that overshoot, or resource over- exploitation, of the Basin's EECC is about 20% for both population and economy. Based on conditions in the study area in 2007, in order to achieve sustainable development, i.e., SDD〉0.70 in this study, the EECC could support a population of 108 million and gross domestic product (GDP) of 2.72 trillion CNY. The newly developed approach in quantifying ecoenvironmental carrying capacity is anticipated to facilitate sustainable development oriented resource management in waterdeficient areas.
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20030203,XDA20030202)National Social Science Found of China(No.17VDL016)National Key Research and Development Program of China(No.2017FY101304)
文摘Mongolia is an important country in the Economic Corridor of China-Mongolia-Russia, a deep understanding of the coupling relationship between urbanization and the eco-environment in Mongolia is meaningful to achieve green development of the Belt and Road. The entropy method and coupling coordination degree model were integrated to evaluate the coupling coordination degree between urbanization and the eco-environment in Mongolia during 2000-2016. The results showed that the coupling coordination degree between urbanization and the eco-environment in Mongolia was generally at the stage of seriously unbalanced development, and that the main contributor of the urbanization and the eco-environment subsystem were demographic urbanization and eco-environment endowment, respectively. The southern part of Mongolia central zone should be paid more attention due to the lower degree of coupling coordination between urbanization and the eco-environment. To promote the healthy urbanization development in Mongolia, six-layer eco-city establishing green development pattern is proposed to provide scientific support for Mongolia.
基金the National Key Basic Research Support Foundation of China(973 Program)(No.2005CB422003)the National Natural Science Foundation of China(No.40571037)
文摘Using remote sensing(RS)data and geographical information system(GIS),eco-environmental vulnerability and its changes were analyzed for the Yellow River Basin,China.The objective of this study was to improve our understanding of eco-environmental changes so that a strategy of sustainable land use could be established.An environmental numerical model was developed using spatial principal component analysis(SPCA)model.The model contains twelve factors that include variables of land use,soil erosion,topography,climate,and vegetation.Using this model,synthetic eco- environmental vulnerability index(SEVI)was computed for 1990 and 2000 for the Yellow River Basin.The SEVI was classified into six levels,potential,slight,light,medium,heavy,and very heavy,following the natural breaks classification. The eco-environmental vulnerability distribution and its changes over the ten years from 1990 to 2000 were analyzed and the driving factors of eco-environmental changes were investigated.The results show that the eco-environmental vulnerability in the study area was at medium level,and the eco-environmental quality had been gradually improved on the whole.However,the eco-environmental quality had become worse over the ten years in some regions.In the study area,population growth,vegetation degradation,and governmental policies for eco-environmental protection were found to be the major factors that caused the eco-environmental changes over the ten years.
基金supported by the National Natural Science Foundation of China (40771019)
文摘In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a case study area for investigation and quantitative evaluation. Technologies of remote sensing (RS), global positioning system (GPS), geographic information system (GIS), and other statistical methods were employed to implement. Results showed that: (1) During the recent twenty years, the areas of forest lands, grasslands and water were reduced, whereas the areas of other types were enlarged. Parts of forest lands, grasslands, and waters had become farmlands, and about 31.5% of the changed grasslands transferred into unused lands. The newly increased farmlands mainly came from grasslands and unused lands. And the newly increased construction lands mainly came from grasslands and farmlands. (2) Regional eco- environmental quality decreased by 12.6%, for which the land degradation (especially the meadow degeneration) and the developing of the cultivated land were mainly responsible, and their contributions to the regional eco-environment changes were 51.84 and 23.63% respectively. (3) The tendency of LUCC and the eco-environment response to LUCC displayed spatial heterogeneity. It can be concluded that the present agricultural production mode was not sustainable in farming-pastoral zone of northern China. Land degradation, especially meadow degradation induced by over-trampling and overgrazing, and developing of cultivated land were mainly responsible for regional eco-environment deterioration. Changing the cultivated land to forest or grass, however, can relieve deterioration of local eco-environment to some extents. And in the farming-pastoral zone in the northern China, evaluating regional eco-environment responses to LUCC was very necessary due to its fragile eco-environments.
文摘By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized.
基金Knowledge Innovation Project of CAS,No.KZCX2-YW-307-02No.KZCX2-YW-321-05Major Project of 11th Five-year Scientific and Technological Support Plan of China,No.2006BAJ05A06
文摘Studying the change of resources consumption and eco-environmental carrying capacity are of importance to the sustainable development of urbanization.Based on the China's economic and social statistical data from 1950 to 2006,the ecological footprint,eco-logical footprint intensity,ecological deficit and surplus,and eco-environment quality com-prehensive index are calculated,the correlation between urbanization and eco-environmental change is analyzed and the eco-environmental guarantee for China's urbanization in 2030 is forecasted.The major results could be summarized as follows:(1) there is a positive linear relation between urbanization and ecological footprint,negative linear relation between ur-banization and ecological footprint intensity,ecological deficit and surplus and the negative exponential relation between urbanization and eco-environment quality comprehensive index.(2) By 2030,the urbanization level will reach 61.32%,the ecological deficit will increase to 42.2866×108 hm2 and the eco-environment quality comprehensive index will drop to 0.3016 on the condition that the total quantity ecological footprint achieves 55.9348×108 hm2.(3) Under the existing urban development pattern,the ecological overload will be more serious in the next 24 years.Constructing the reasonable industrial structure and establishing the intensive resources utilization system to alleviate the eco-environmental pressure are the tough challenges in China's urbanization process.
基金Under the auspices of the Key Project of Chinese Academy of Sciences (No. KZCX2)
文摘Although the Songnen Plain in the northeastern China was developed relatively late in the temperate zone of the world, its eco-environment has changed greatly. This paper analyzes the changes of land cover and the rates and trends ofdesertification during the past 100 years in the Songnen Plain. According to the macroscopic analysis, we find that the eco-environment in the plain has reached to the threshold of catastrophic change since the 1950s. The Thom Needle Catastrophic Model was used to determine and validate this conclusion. Human activities, including large-scale construction projects, such as huge dams and dikes, and excessive grazing were the primary factors contributing to regional eco-environmental catastrophe. And irrational reclamation of the wilderness also affected the eco-environmental change. The results reveal the complex human-land interactions.
基金the support of the National Natural Science Foundation of China(No.41661038)Soft Science Research Project of Science and Technology Department of Qinghai province(No.2015-ZJ-602)
文摘The Ecological-living-productive land(ELPL)classification system was proposed in an effort to steer China's land pattern to an ecological-centered path,with the development model shifting from a single function into more integrated multifunction land use.The focus is coordinating the man-land contradictions and developing an intensive,efficient and sustainable land use policy in an increasingly tense relationship between humans and nature.Driven by socioeconomic change and rapid population growth,many cities are undergoing urban sprawl,which involves the consumption of cropland and ecological land and threatens the ecological balance.This paper aims to quantitatively analyze the critical effects of ELPL changes on eco-environmental quality according to land use classification based on leading function of ecology,living and production from 1990 to 2015 with a case study of Xining City.Also,four future land use scenarios were simulated for 2030 using the Future Land Use Simulation(FLUS)model that couples human and natural effects.Our results show a decrease in productive land(PL)and an increase in ecological land(EL)and living land(LL)in Xining City.Forestry ecological land(FEL)covered the top largest proportion;agriculture productive land(APL)showed the greatest reduction and urban and rural living land(U-RLL)presented a dramatic increase.The eco-environmental quality improved in 1990-2010,mainly affected by the conversion of APL to FEL and GEL.However,the encroachment of U-RLL into APL,other ecological land(OEL)and FEL was the main contributor to the decline in eco-environmental quality in 2010-2015 as well as the primary reason for the increase area of lower-quality.The Harmonious Development(HD)-Scenario,characterized by a rational allocation of LL and PL and a better eco-environment,would have implications for planning and monitoring future management of ELPL,and may represent a valuable reference for local policy-makers.
基金Knowledge Innovation Project of CAS No. KZCX1-10-06
文摘Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×10 4 km 2 . Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×10 4 km 2 . Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.
基金Projects(2008JT1013,2007JT3018,05SK3002) supported by the Key Program for Science and Technology in Hunan Province,ChinaProject(2007ZK2025) supported by the Key Program for Soft Science in Hunan Province,China
文摘The process of urbanization affects the urban warming.The change of urban warming was investigated by several urbanization factors in Changsha,China.The data of surface temperature(minimum,maximum and mean) of Changsha were analyzed to understand the possible effects of urbanization on the climate of this region owing to the population growth,built-up area expansion and energy consumption increases.The weights of these three factors were calculated by the analytical hierarchy process(AHP).Then,three weights were simulated with nonlinear method to obtain the urbanization development rate which was utilized to reveal the influence of the urbanization factors on the surface temperature.The result shows that there is a significant upward trend in the urban temperatures of Changsha.The temperature increase seems to be closely related to the rate of urbanization between 1993 and 2008,and there is an evidential increase trend of the influence on urban temperature by urbanization during 16 years.It is a quantifiable approach measuring the relationship between urbanization and urban eco-environment,and can be applied for the urban sustainability.