期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Eco-geochemical Characteristics of Muskmelon Root Soil in Planting Region of Hetao Irrigation Area of Inner Mongolia
1
作者 侯俊琳 《Agricultural Science & Technology》 CAS 2016年第9期2147-2151,共5页
[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide s... [Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards. 展开更多
关键词 Root system soil Anthropogenic-alluvial soil Saline soil eco-geochemical characteristics
下载PDF
Trace Elements in Lake Baikal: Current Status, Forecast and Monitoring Problems
2
作者 V. A. Vetrov 《Journal of Geoscience and Environment Protection》 2018年第3期66-82,共17页
Assessment of the current status of Lake Baikal proved to be based on changes in natural (“preindustrial”) chemical content in basic abiotic and biological compartments of the Lake geosystem. This approach was used ... Assessment of the current status of Lake Baikal proved to be based on changes in natural (“preindustrial”) chemical content in basic abiotic and biological compartments of the Lake geosystem. This approach was used to evaluate background “base-line levels” of 6 major and about 50 minor and trace ele-ments in the Lake Baikal water body using a number of most reliable data re-ported within 1992-2012. In terms of environment geochemistry Baikal is one of the purest water reservoirs on the Earth. A simple mass balance model was proposed for assessing possible anthropogenic impact on Baikal water geo-chemistry. Estimations of change trends showed that only for Na+, SO42-, Cl- and Mo growth rate of their average concentrations in the Lake occurred to be 1%, 3%, 7% and 2% in every 10 years. Space-time monitoring schedules for all water body compartments of the Lake are proposed as well as similar moni-toring programs for tributaries, precipitations, bottom sediments, aquatic biota. 展开更多
关键词 Lake BAIKAL Environmental Geochemistry Status BASE-LINE Concentrations Trace Elements Change Trends FORECAST Mass BUDGET ANTHROPOGENIC Impact eco-geochemical MONITORING MONITORING Programs
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部