期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preliminary Study on the Effect of Different Ecological Cultivation Modes on the Water Stability of Soil Aggregates in Rubber Based Agroforestry Systems
1
作者 Shiyun Zhan Fengyue Qin +4 位作者 Dongling Qi Zhixiang Wu Chuan Yang Yingying Zhang Qingmao Fu 《Open Journal of Ecology》 2023年第11期782-793,共12页
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re... Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance. 展开更多
关键词 ecological complex cultivation Rubber Plantation Soil Aggregates Soil Aggregate Water Stability Rubber Based Agroforestry Systems
下载PDF
Exploration and Practice of Rubber Based Agroforestry Complex Systems in China
2
作者 Dongling Qi Zhixiang Wu +4 位作者 Chuan Yang Zhongliang Tao Linlin Zhao Yingying Zhang Qingmao Fu 《Advances in Bioscience and Biotechnology》 2023年第12期479-491,共13页
Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and... Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and structural control scientifically. Rubber agroforestry complex ecosystems aim for sustainable development in terms of industry, ecology, resource utilization, and the livelihoods of producers. Rubber agroforestry complex ecosystems create a complex production structure system that integrates biology, society, and the economy through species combinations. Rubber trees and associated biological components coordinate with each other, mutually promote growth, and yield a variety of products for producers. Cultivation techniques and patterns of rubber agroforestry are essential components of these ecosystems. This study analyzes the production practices of rubber agroforestry complex cultivation, with a focus on the development and characteristics (complexity, systematicity, intensity, and hierarchy) of rubber agroforestry systems using a literature analysis and a survey approach. It explores the types and scales of complex planting, specifications and forms, and major effects of complex cultivation. This study identifies successful rubber agroforestry cultivation patterns and practical techniques, as well as the potential benefits of developing rubber agroforestry cultivation. It also points out the shortcomings in the development of complex planting, including an emphasis on production practices but insufficient theoretical research, a focus on production but inadequate attention to the market, and an emphasis on yield while overlooking the improvement of standards, brands, and added value. There are various complex patterns for young rubber plantations, but relatively fewer for mature plantations. Based on this analysis, this study suggests that future efforts should focus on in-depth research on interspecies and environmental interactions in rubber agroforestry ecosystems, clearly define key roles, accelerate the innovation of development patterns, and strengthen the foundation for development. It recommends promoting and demonstrating successful rubber agroforestry complex patterns and providing technical training, developing product branding for rubber agroforestry patterns, enhancing product value, expanding the application functions of rubber-forest mixed crop products, and establishing a stable and sustainable industry chain. This study provide practical experience and theoretical insights in rubber agroforestry complex systems from China the potential to enrich the knowledge of rubber agroforestry composite systems, provide practical experience to improve the operating income of smallholders, and even promote the sustainable development of rubber plantations. 展开更多
关键词 Rubber Tree (Hevea brasiliensis) Agroforestry Ecosystem Rubber Intercropping complex ecological cultivation Land Resource
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部