The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat in...The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.展开更多
Insects possess specific immune responses to protect themselves from different types of pathogens.Activation of immune cascades can inflict significant developmental costs on the surviving host.To characterize infecti...Insects possess specific immune responses to protect themselves from different types of pathogens.Activation of immune cascades can inflict significant developmental costs on the surviving host.To characterize infection kinetics in a surviving host that experiences baculovirus inoculation,it is crucial to determine the timing of immune responses.Here,we investigated time-dependent immune responses and developmental costs elicited by inoculations from each of two wild-type baculoviruses,Autographa californica multiple nucleopolyhedrovirus(AcMNPV)and Helicoverpa zea single nucleopolyhedrovirus(HzSNPV),in their common host H.zea.As H.zea is a semi-permissive host of AcMNPV and fully permissive to HzSNPV,we hypothesized there are differential immune responses and fitness costs associated with resisting infection by each virus species.Newly molted 4th-instar larvae that were inoculated with a low dose(LD15)of either virus showed signify icantly higher hemolymph FAD-glucose dehydrogenase(GLD)activities compared to the corresponding control larvae.Hemolymph phenoloxidase(PO)activity,protein concentration and total hemocyte numbers were not increased,but instead were lower than in control larvae at some time points post-inoculation.Larvae that survived either virus inoculation exhibited reduced pupal weight;survivors inoculated with AcMNPV grew slower than the control larvae,while survivors of HzSNPV pupated earlier than control larvae.Our results highlight the complexity of immune responses and fitness costs associated with combating different baculoviruses.展开更多
Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nyl...Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nylon monofilament increases between two attempts of activation of immune system in mealworm beetles Tenebrio molitor, and whether previous exposure to nylon monofilament may also increase protection against an entomopathogenic fungus. We found that survival of beetles subjected to immune activation by nylon implant and subsequent fungal exposure a week later was significantly higher than survival of beetles which had been subjected to fimgal infection only. This result suggests that previous immune activation by the nylon implant may be considered as broad spectrum "immune priming" which helps to fight not only the same intruder but also other parasites.展开更多
Abstract Dendroctonus-fungus symbioses are often considered as the ideal model sys- tems to study the development and maintenance ofectosymbioses, and diverse interactions, including antagonism, commensalism and mutua...Abstract Dendroctonus-fungus symbioses are often considered as the ideal model sys- tems to study the development and maintenance ofectosymbioses, and diverse interactions, including antagonism, commensalism and mutualism, have been documented between these organisms. The red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae) is a pine-killing invasive beetle in northern China. Fungi species Ophiostoma minus, Leptographium sinoprocerum, L. terebrantis and L. procerum were associated with this bark beetle. Antagonistic interactions between D. valens and its as- sociated fungi, such as O. minus and L. sinoprocerum, have been demonstrated, but the underlying causes of this phenomenon are unknown. Here, we first found the two tested fungi species retarded the net weight gain of D. valens larvae after completing 3-day feeding on their media. Furthermore, we provide direct evidence indicating the effect of associated fungi on the immunocompetence olD. valens larvae to explain the documented antagonism. Our results showed that the activity of phenoloxidase and total phenoloxi- dase in D. valens larvae were significantly upregulated by two strains of associated fungi, O. minus and L. sinoprocerum as compared with the controls. The phenoloxidase ratio increased significantly in the larvae which had fed for 3 days on media inoculated with O. minus. Because insect immtme defenses are costly to be deployed, these results could be explored as one of the underlying mechanisms of the documented antagonism.展开更多
文摘The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.
基金the United States Department of Agriculture(AFRI 2017-67013-26596)awarded to GWF and KHNational Science Foundation(IOS-1645548)awarded to GWF,IS,and KH+1 种基金and Hatch Project PEN04576(GWF and KH).QP thanks the financial support from China Scholarship Council(grant 201506300111)Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship(NSERC PDF-488105-2016).
文摘Insects possess specific immune responses to protect themselves from different types of pathogens.Activation of immune cascades can inflict significant developmental costs on the surviving host.To characterize infection kinetics in a surviving host that experiences baculovirus inoculation,it is crucial to determine the timing of immune responses.Here,we investigated time-dependent immune responses and developmental costs elicited by inoculations from each of two wild-type baculoviruses,Autographa californica multiple nucleopolyhedrovirus(AcMNPV)and Helicoverpa zea single nucleopolyhedrovirus(HzSNPV),in their common host H.zea.As H.zea is a semi-permissive host of AcMNPV and fully permissive to HzSNPV,we hypothesized there are differential immune responses and fitness costs associated with resisting infection by each virus species.Newly molted 4th-instar larvae that were inoculated with a low dose(LD15)of either virus showed signify icantly higher hemolymph FAD-glucose dehydrogenase(GLD)activities compared to the corresponding control larvae.Hemolymph phenoloxidase(PO)activity,protein concentration and total hemocyte numbers were not increased,but instead were lower than in control larvae at some time points post-inoculation.Larvae that survived either virus inoculation exhibited reduced pupal weight;survivors inoculated with AcMNPV grew slower than the control larvae,while survivors of HzSNPV pupated earlier than control larvae.Our results highlight the complexity of immune responses and fitness costs associated with combating different baculoviruses.
文摘Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nylon monofilament increases between two attempts of activation of immune system in mealworm beetles Tenebrio molitor, and whether previous exposure to nylon monofilament may also increase protection against an entomopathogenic fungus. We found that survival of beetles subjected to immune activation by nylon implant and subsequent fungal exposure a week later was significantly higher than survival of beetles which had been subjected to fimgal infection only. This result suggests that previous immune activation by the nylon implant may be considered as broad spectrum "immune priming" which helps to fight not only the same intruder but also other parasites.
文摘Abstract Dendroctonus-fungus symbioses are often considered as the ideal model sys- tems to study the development and maintenance ofectosymbioses, and diverse interactions, including antagonism, commensalism and mutualism, have been documented between these organisms. The red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae) is a pine-killing invasive beetle in northern China. Fungi species Ophiostoma minus, Leptographium sinoprocerum, L. terebrantis and L. procerum were associated with this bark beetle. Antagonistic interactions between D. valens and its as- sociated fungi, such as O. minus and L. sinoprocerum, have been demonstrated, but the underlying causes of this phenomenon are unknown. Here, we first found the two tested fungi species retarded the net weight gain of D. valens larvae after completing 3-day feeding on their media. Furthermore, we provide direct evidence indicating the effect of associated fungi on the immunocompetence olD. valens larvae to explain the documented antagonism. Our results showed that the activity of phenoloxidase and total phenoloxi- dase in D. valens larvae were significantly upregulated by two strains of associated fungi, O. minus and L. sinoprocerum as compared with the controls. The phenoloxidase ratio increased significantly in the larvae which had fed for 3 days on media inoculated with O. minus. Because insect immtme defenses are costly to be deployed, these results could be explored as one of the underlying mechanisms of the documented antagonism.