As one of the most typical wetlands,marsh plays an important role in hydrological and economic aspects,especially in keeping biological diversity.In this study,the definition and connotation of the ecological water st...As one of the most typical wetlands,marsh plays an important role in hydrological and economic aspects,especially in keeping biological diversity.In this study,the definition and connotation of the ecological water storage of marsh is discussed for the first time,and its distinction and relationship with ecological water requirement are also analyzed.Furthermore,the gist and method of calculating ecological water storage and ecological water requirement have been provided,and Momoge wetland has been given as an example of calculation of the two variables.Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement.For reasonably spatial and temporal variation of water storage and rational water resources planning,the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions,ecological demand and actual water resources.展开更多
An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were a...An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were analyzed, involving i) the EWR for river system, ii) the EWR for wetlands and lakes, and iii) the EWR for discharge into the sea to maintain the estuary ecological balance of the Haihe River. The Montana method and related water level-flow relationships, and the statistic approach based on hydrological records were applied to estimate different components of EWR. The results showed that the total ecological water demand in the region, was about 3.47-14.56 billion m^3. Considering flow regime change and uncertainty, the ecological water demand could be estimated by the hydrological frequency approach. Preliminary analysis showed that for different annual runoff under the frequencies of 20%, 50%, 75% and 95%, the ecological water demand approached 12%-50%, 18%-74%, 24%-103%, 35%-148% and 16%-66%, respectively. By further analysis to balance ecological water-use and socioeconomic water-use, the rational percentage of ecological water-use was estimated as 35%-74%, that provides useful information to judge whether the allocation of water resources is reasonable, and was proved to be satisfactory by comparing with the practical condition.展开更多
Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan...Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan of environmental improvement,the appearance of villages in rural areas will be significantly improved,and the gap between urban and rural areas will be shortened.This research addresses the problems of scarce water resources,imperfect rainwater collection facilities,and increased environmental pollution in rural areas,and explores a flexible,effective,and integrated landscape ecological water treatment system that integrates with natural ecosystems.The practice has shown that the flexible combination of different technical measures according to local conditions and the construction of ecological water self-circulation and self-purification systems can reduce maintenance costs and achieve sustainable landscape.The virtuous cycle of the revetment’s micro-ecology greatly improves the environmental carrying capacity of the landscape.Reasonable water management system is more flexible in dealing with unexpected problems.The thesis proposes landscape design strategies for water circulation and water purification in rural areas,and applies them to actual design cases.It attempts to introduce a combined treatment system to achieve a more diverse landscape concept and further explore the healthy and sustainable development of rural water environment.展开更多
[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyz...[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyzed based on,the data of soil humidity and meteorology of the spot. [Result] The result showed that the actual annual ecological water requirement in the spot was 678×10^6 m^3, and the proportion of soil water and evapotranspiration were 21% and 79%, respectively; the minimum annual ecological water requirement quota in the spot was 480.27×10^6 m^3, and the proportion of soil water and evapotranspiration were 16% and 84%, respectively; the minimum annual suitable ecological water requirement quota in the spot was 624.22×10^6 m^3, and the proportion of soil water and evapotranspiration were 18% and 82%, respectively. The precipitation was 614×10^6 m^3, and consumptive water surplus reached up to 78×10^6 m^3. The years when the precipitation was higher than the evapotranspiration accounted for 76%. Since 1980s, the evapotranspiration showed a linearly increasing trend. The precipitation was higher than the evapotranspiration from Jun. to Oct. and less than the evapotranspiration from Nov. to Dec. and Jan. to May. Evapotranspiration water requirement was regulated by soil water. The dis- parity between precipitation and evapotranspiration was huge in spring, thus having certain influence on waterfalls and streams in the spot. [Conclusion] The results of this study provided a basis for the rational use and long-term planning of the water sources in Maijishan Scenic Spot.展开更多
We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells acro...We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.展开更多
In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper prese...In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper presents a new method for calculating wetland EWRs,which is based on the response of habitats to water level,and determines water level threshold through the functional integrity of habitats.Results show that in the Huanghe (Yellow) River Delta water levels between 5.0 m and 5.5 m are required to maintain the functional integrity of the wetland at a value higher than 0.7.One of the dominant plants in the delta,Phragmites australis,tolerates water level fluctuation of about ± 0.25 m without the change in wetland functional integrity.The minimum,optimum and maximum EWRs for the Huanghe River Delta are 9.42×106 m3,15.56×106 m3 and 24.12×106 m3 with water levels of 5.0 m,5.2 m and 5.5 m,corresponding to functional integrity indices of 0.70,0.84 and 0.72,respectively.A wetland restoration program has been performed,which aims to meet these EWRs in attempt to recover from losses of up to 98% in the delta's former wetland area.展开更多
In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as th...In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108 m3 for sediment transfer and 4×108 m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.展开更多
In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, we...In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.展开更多
The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping....The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping. First of all. the spatial heterogeneity of ecosystem can be reflected well by landscape pattern; secondly, landscape patterns adjust closely with environmental changes; finally, water condition is the key ecological factor for landscape pattern in the arid region.The landsat TM image of 1:100,000 on September 22, 1996 were calibrated with topographical map of the same scale, and then landscape patterns were interpreted and mapped. As a result the Qaidam Basin could be divided into 14 main types, including 67 subtypes. Concerning the characteristics of the EWD of each sub-type, the EWD in the whole basin could be estimated according to the following formula:V= (E - P ) * S = r (KEo - P ) * S Where, V is the ecological demand for Water (m3), E is the evaporation potential on terrestrial surface (m). P is the precipitation in landscape unit (m), S is the area of landscape unit (m2), Eo is the evaporation potential on water surface (m), K is the evaporation coefficient, and r is the coverage.According to the results, the ecological demand for water of desert vegetation is about 9,65×108m3, while it is about 24.48×108m3 for the lake in the inner basin. Therefore, the total EWD occupies approximately 65.7% of the total water resources in the basin. In conclusion, the quantitative method based on landscape ecological mapping is feasible, which attentively transfers the 'point'information to the 'area'. However, the preliminary results are expccted to improve by further field delta.展开更多
With the development and reform of water price policy, the most common view is that the total cost of water price can reflect the tradable traits of water resources, which can enhance the water use efficiency and achi...With the development and reform of water price policy, the most common view is that the total cost of water price can reflect the tradable traits of water resources, which can enhance the water use efficiency and achieve water resources sustainable utilization. Besides in actual pricing operation, from the angle of protection cost, water price characterizes the cost of controlling pollution and protecting water environment. Based on the two factors of water environment capacity and ecological water consumption embodied by the environment water price, this paper puts forward an effective environmental water price calculation model based on three elements of sewage treatment fee, ecological water price and water quality maintenance fee. And this paper takes the data of Hefei as an example, calculates reasonable environmental price, comparing which with the existing price, and finds the main existing problem which needs to be solved urgently in management.展开更多
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur...The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region.展开更多
Shuangtaizi estuarine wetland along the Bohai Sea coast,the biggest bulrush wetland in the world,has been listed in 'The Record of Important International Wetland Conservation District'. Taking the year of 2 0...Shuangtaizi estuarine wetland along the Bohai Sea coast,the biggest bulrush wetland in the world,has been listed in 'The Record of Important International Wetland Conservation District'. Taking the year of 2 000 as an example,the minimum,the most suitable and the maximum ecological water requirement of Shuangtaizi estuarine wetland are calculated in this paper based on both ecological theory and Geological Information System technology. In addition,the remote sensing technique is adopted in the data acquisition process. Moreover,the total water requirement and the unit area water requirement for different wetland types are obtained. The result is very important for water resources planning,ecological conservation and regional agriculture structure adjustment in Shuangtaizi. Meanwhile,this study can serve as a useful example for calculating the ecological water requirement in other similar estuarine wetlands.展开更多
It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin ...It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.展开更多
The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based...The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based on GIS and RS with the source information of hydrological data of 46 hydrological gauges covering 52 years and the digital images of Landsat TM in 1986, 1996 and 2000, the landscape patterns, precipitation and runoff in the East Liaohe River Basin were analyzed. With the result of the above analysis, the spatial and temporal changes of the ecological water demand in the slope systems (EWDSS) of the East Liaohe River Basin (ELRB) were derived. Landscapes in the ELRB are dispersed and strongly disturbed by human actions. The hydrological regime in ELRB has distinct spatial variations. The average annual EWDSS in the ELRB is 504.72 mm (324.08-618.89 mm), and the average EWDSS in the growth season (from May to September) is 88.29% of the year's total EWDSS .The ultimate guaranteeing ratio of the EWDSS in ELRB is 90%. The scarce EWDSS area in the whole year and in the growth season are 60.47% and 74.01% of the entire basin respectively. The trend of scarce EWDSS area is most serious according to the quantity and area of scarce EWDSS regions.展开更多
Ecological water replenishment(EWR)is an important strategy for river restoration globally,but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great ...Ecological water replenishment(EWR)is an important strategy for river restoration globally,but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge.Here,we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA(eDNA)metabarcoding.The three ecosystems include a long-term cut-off river,a short-term connected river after EWR,and long-term connected rivers.We analyzed community stability by investigating species composition,stochastic and deterministic dynamics interplay,and ecological network robustness.We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton,altered their community dynamics,and lessened the variation within the community.Moreover,EWR disrupted the deterministic patterns of community organization,favoring dispersal constraints,and aligning with trends observed in naturally connected rivers.The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance,whereas,in permanently connected rivers,both forces concurrently influenced community assembly.The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems.This shift markedly bolstered the resilience of the ecological network.The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions,which could be critical in assessing the effects of river restoration projects throughout their life cycle.展开更多
At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-poi...At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem.展开更多
Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg...Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.展开更多
River managers in Australia are managing in the face of extremes to provide security of water supply for people, production and the environment. Balancing the water requirements of people, environments and econo- mies...River managers in Australia are managing in the face of extremes to provide security of water supply for people, production and the environment. Balancing the water requirements of people, environments and econo- mies requires that water security is viewed holistically, not just in terms of the water available for human consump- tion. Common definitions of water security focus on the needs of both humans and ecosystems for purposes such as drinking, agriculture and industrial use, and to maintain ecological values. Information about achieving water security for the environment or ecological purposes can be a challenge to interpret because the watering require- ments of key ecological processes or assets are not well understood, and the links between ecological and human values are often not obvious to water users. Yet the concepts surrounding river health are inherently linked to holistic concepts of water security. The measurement of aquatic biota provides a valuable tool for managers to understand progress toward achieving ecological water security objectives. This paper provides a comprehensive review of the reference condition approach to river health assessment, using the development of the Australian River Assessment System (AUSRIVAS) as a case study. We make the link between the biological assessment of river health and assessment of ecological water security, and suggest that such an approach provides a way of reporting that is relevant to the contribution made by ecosystems to water security. The reference condition approach, which is the condition representative of minimally disturbed sites organized by selected physical, chemical, and biological characteristics, is most important for assessing ecological water security objectives.展开更多
Aquatic ecosystems require ecological water allocation to prevent from being damaged by natural disasters and undue exploitation. This paper discusses and estimates the ecological water requirements (EWRs) of typica...Aquatic ecosystems require ecological water allocation to prevent from being damaged by natural disasters and undue exploitation. This paper discusses and estimates the ecological water requirements (EWRs) of typical areas in the Huaihe Basin to determine rational allocations of water resources and pro- mote regional improvements of the ecological environment. The main river course, including Hongze Lake and Nansi Lake, was selected as the study subject. Calculational methods for the river and lake EWRs were based on the reasonableness of the results and data availability. The monthly guarantee rate method was used to calculate monthly, flood period, non-flood period, and annual EWRs for the main river course and the main tributaries at two different guarantee rates. The minimum water level method was used to calculate annual EWRs for Hongze Lake and the upper and lower Nansi Lake of 1.521×10^9 m^3, 0.637×10^9 m^3, and 0.306×10^9 m^3. The results were used to evaluate the rationality of the quantity of water resources allocated to ecological uses in the Huaihe Basin during 1998-2003. The result shows that the present water resource allocations in the Huaihe Basin cannot satisfy the basic ecological requirements for some years, especially years with less precipitation.展开更多
基金National Natural Science Foundation of China,No.40571029
文摘As one of the most typical wetlands,marsh plays an important role in hydrological and economic aspects,especially in keeping biological diversity.In this study,the definition and connotation of the ecological water storage of marsh is discussed for the first time,and its distinction and relationship with ecological water requirement are also analyzed.Furthermore,the gist and method of calculating ecological water storage and ecological water requirement have been provided,and Momoge wetland has been given as an example of calculation of the two variables.Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement.For reasonably spatial and temporal variation of water storage and rational water resources planning,the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions,ecological demand and actual water resources.
基金Project supported by the Natural Science Foundation of China (No. 50279049)the Knowledge Innovation Key Project of the Chinese Academy of Sciences (Nos. CX10G-E01-08 and KZCX2-SW-317)the National Challenging Program of Science and Technology of China (No. 2004BA610A-01).
文摘An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were analyzed, involving i) the EWR for river system, ii) the EWR for wetlands and lakes, and iii) the EWR for discharge into the sea to maintain the estuary ecological balance of the Haihe River. The Montana method and related water level-flow relationships, and the statistic approach based on hydrological records were applied to estimate different components of EWR. The results showed that the total ecological water demand in the region, was about 3.47-14.56 billion m^3. Considering flow regime change and uncertainty, the ecological water demand could be estimated by the hydrological frequency approach. Preliminary analysis showed that for different annual runoff under the frequencies of 20%, 50%, 75% and 95%, the ecological water demand approached 12%-50%, 18%-74%, 24%-103%, 35%-148% and 16%-66%, respectively. By further analysis to balance ecological water-use and socioeconomic water-use, the rational percentage of ecological water-use was estimated as 35%-74%, that provides useful information to judge whether the allocation of water resources is reasonable, and was proved to be satisfactory by comparing with the practical condition.
文摘Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan of environmental improvement,the appearance of villages in rural areas will be significantly improved,and the gap between urban and rural areas will be shortened.This research addresses the problems of scarce water resources,imperfect rainwater collection facilities,and increased environmental pollution in rural areas,and explores a flexible,effective,and integrated landscape ecological water treatment system that integrates with natural ecosystems.The practice has shown that the flexible combination of different technical measures according to local conditions and the construction of ecological water self-circulation and self-purification systems can reduce maintenance costs and achieve sustainable landscape.The virtuous cycle of the revetment’s micro-ecology greatly improves the environmental carrying capacity of the landscape.Reasonable water management system is more flexible in dealing with unexpected problems.The thesis proposes landscape design strategies for water circulation and water purification in rural areas,and applies them to actual design cases.It attempts to introduce a combined treatment system to achieve a more diverse landscape concept and further explore the healthy and sustainable development of rural water environment.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest,China(GYHY201106029)~~
文摘[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyzed based on,the data of soil humidity and meteorology of the spot. [Result] The result showed that the actual annual ecological water requirement in the spot was 678×10^6 m^3, and the proportion of soil water and evapotranspiration were 21% and 79%, respectively; the minimum annual ecological water requirement quota in the spot was 480.27×10^6 m^3, and the proportion of soil water and evapotranspiration were 16% and 84%, respectively; the minimum annual suitable ecological water requirement quota in the spot was 624.22×10^6 m^3, and the proportion of soil water and evapotranspiration were 18% and 82%, respectively. The precipitation was 614×10^6 m^3, and consumptive water surplus reached up to 78×10^6 m^3. The years when the precipitation was higher than the evapotranspiration accounted for 76%. Since 1980s, the evapotranspiration showed a linearly increasing trend. The precipitation was higher than the evapotranspiration from Jun. to Oct. and less than the evapotranspiration from Nov. to Dec. and Jan. to May. Evapotranspiration water requirement was regulated by soil water. The dis- parity between precipitation and evapotranspiration was huge in spring, thus having certain influence on waterfalls and streams in the spot. [Conclusion] The results of this study provided a basis for the rational use and long-term planning of the water sources in Maijishan Scenic Spot.
基金National Natural Science Foundation of China, No.90502004 Knowledge Innovation Project of the CAS, No.KZCX2-YW-Q10-3-4, No.KZCX2-YW-Q10-3
文摘We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.
基金Under the auspices of Major State Basic Research Development Program of China (No. 2006CB403303)National Natural Science Foundation of China (No. U0833002,40571149)Scientific Research Foundation of Beijing Normal University (No. 2009SD-24)
文摘In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper presents a new method for calculating wetland EWRs,which is based on the response of habitats to water level,and determines water level threshold through the functional integrity of habitats.Results show that in the Huanghe (Yellow) River Delta water levels between 5.0 m and 5.5 m are required to maintain the functional integrity of the wetland at a value higher than 0.7.One of the dominant plants in the delta,Phragmites australis,tolerates water level fluctuation of about ± 0.25 m without the change in wetland functional integrity.The minimum,optimum and maximum EWRs for the Huanghe River Delta are 9.42×106 m3,15.56×106 m3 and 24.12×106 m3 with water levels of 5.0 m,5.2 m and 5.5 m,corresponding to functional integrity indices of 0.70,0.84 and 0.72,respectively.A wetland restoration program has been performed,which aims to meet these EWRs in attempt to recover from losses of up to 98% in the delta's former wetland area.
基金Key Project of Chinese Academy of Sciences, KZ951-A1-203 Knowledge Innovation Project of Institute of Geographic Sciences and N
文摘In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108 m3 for sediment transfer and 4×108 m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.
基金supported by the National Natural Science Foundation of China (Grant No. 50879041)
文摘In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.
文摘The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping. First of all. the spatial heterogeneity of ecosystem can be reflected well by landscape pattern; secondly, landscape patterns adjust closely with environmental changes; finally, water condition is the key ecological factor for landscape pattern in the arid region.The landsat TM image of 1:100,000 on September 22, 1996 were calibrated with topographical map of the same scale, and then landscape patterns were interpreted and mapped. As a result the Qaidam Basin could be divided into 14 main types, including 67 subtypes. Concerning the characteristics of the EWD of each sub-type, the EWD in the whole basin could be estimated according to the following formula:V= (E - P ) * S = r (KEo - P ) * S Where, V is the ecological demand for Water (m3), E is the evaporation potential on terrestrial surface (m). P is the precipitation in landscape unit (m), S is the area of landscape unit (m2), Eo is the evaporation potential on water surface (m), K is the evaporation coefficient, and r is the coverage.According to the results, the ecological demand for water of desert vegetation is about 9,65×108m3, while it is about 24.48×108m3 for the lake in the inner basin. Therefore, the total EWD occupies approximately 65.7% of the total water resources in the basin. In conclusion, the quantitative method based on landscape ecological mapping is feasible, which attentively transfers the 'point'information to the 'area'. However, the preliminary results are expccted to improve by further field delta.
文摘With the development and reform of water price policy, the most common view is that the total cost of water price can reflect the tradable traits of water resources, which can enhance the water use efficiency and achieve water resources sustainable utilization. Besides in actual pricing operation, from the angle of protection cost, water price characterizes the cost of controlling pollution and protecting water environment. Based on the two factors of water environment capacity and ecological water consumption embodied by the environment water price, this paper puts forward an effective environmental water price calculation model based on three elements of sewage treatment fee, ecological water price and water quality maintenance fee. And this paper takes the data of Hefei as an example, calculates reasonable environmental price, comparing which with the existing price, and finds the main existing problem which needs to be solved urgently in management.
基金This study was supported by the Key Project of National Natural Science Foundation of China-Xinjiang Joint Fund(U1803241)the Key Project of Xinjiang Uygur Autonomous Region Talent Special Plan-Tianshan Outstanding Youth(2019Q033)+1 种基金the West Light Foundation of the Chinese Academy of Sciences(2017-XBQNXZ-B-019)the Science and Technology Plan Major Projects of the Xinjiang Uygur Autonomous Region,China(2021A03001-3).
文摘The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region.
基金supported by the Special Doctorate Science Foundation of the Ministry of Education (No. 200601570011)Liaoning Supporting Plan for Excel-lent Talents ([2006]124#)the National Natural Sci-ence Foundation of China (No.50879046).
文摘Shuangtaizi estuarine wetland along the Bohai Sea coast,the biggest bulrush wetland in the world,has been listed in 'The Record of Important International Wetland Conservation District'. Taking the year of 2 000 as an example,the minimum,the most suitable and the maximum ecological water requirement of Shuangtaizi estuarine wetland are calculated in this paper based on both ecological theory and Geological Information System technology. In addition,the remote sensing technique is adopted in the data acquisition process. Moreover,the total water requirement and the unit area water requirement for different wetland types are obtained. The result is very important for water resources planning,ecological conservation and regional agriculture structure adjustment in Shuangtaizi. Meanwhile,this study can serve as a useful example for calculating the ecological water requirement in other similar estuarine wetlands.
文摘It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.
基金Key Resource and Environment Projects of CAS,No.KZ952-J1-067
文摘The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based on GIS and RS with the source information of hydrological data of 46 hydrological gauges covering 52 years and the digital images of Landsat TM in 1986, 1996 and 2000, the landscape patterns, precipitation and runoff in the East Liaohe River Basin were analyzed. With the result of the above analysis, the spatial and temporal changes of the ecological water demand in the slope systems (EWDSS) of the East Liaohe River Basin (ELRB) were derived. Landscapes in the ELRB are dispersed and strongly disturbed by human actions. The hydrological regime in ELRB has distinct spatial variations. The average annual EWDSS in the ELRB is 504.72 mm (324.08-618.89 mm), and the average EWDSS in the growth season (from May to September) is 88.29% of the year's total EWDSS .The ultimate guaranteeing ratio of the EWDSS in ELRB is 90%. The scarce EWDSS area in the whole year and in the growth season are 60.47% and 74.01% of the entire basin respectively. The trend of scarce EWDSS area is most serious according to the quantity and area of scarce EWDSS regions.
基金supported by the National Key Research and Development Program of China(2021YFC3201005,2021YFC3201000,and 2022YFC2601301)the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China(2022YSKY-41)+1 种基金the National Nature Science Foundation of China(U1906223)The authors thank Yong Du in Yongding River Investment Co.Ltd for providing Fig.S2.Dr James Walter Voordeckers is acknowledged for assistance in English language modification.
文摘Ecological water replenishment(EWR)is an important strategy for river restoration globally,but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge.Here,we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA(eDNA)metabarcoding.The three ecosystems include a long-term cut-off river,a short-term connected river after EWR,and long-term connected rivers.We analyzed community stability by investigating species composition,stochastic and deterministic dynamics interplay,and ecological network robustness.We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton,altered their community dynamics,and lessened the variation within the community.Moreover,EWR disrupted the deterministic patterns of community organization,favoring dispersal constraints,and aligning with trends observed in naturally connected rivers.The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance,whereas,in permanently connected rivers,both forces concurrently influenced community assembly.The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems.This shift markedly bolstered the resilience of the ecological network.The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions,which could be critical in assessing the effects of river restoration projects throughout their life cycle.
基金supported by the Item of Yongding River ecological architecturethe restoration of technology research and demonstration,Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science(No.2009B050)the National Natural Science Foundation of China(No.50809027)
基金The Knowledge Innovation Program of Wuhan-Shuguang Project(Project No.2023020201020361).
文摘At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem.
文摘Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.
文摘River managers in Australia are managing in the face of extremes to provide security of water supply for people, production and the environment. Balancing the water requirements of people, environments and econo- mies requires that water security is viewed holistically, not just in terms of the water available for human consump- tion. Common definitions of water security focus on the needs of both humans and ecosystems for purposes such as drinking, agriculture and industrial use, and to maintain ecological values. Information about achieving water security for the environment or ecological purposes can be a challenge to interpret because the watering require- ments of key ecological processes or assets are not well understood, and the links between ecological and human values are often not obvious to water users. Yet the concepts surrounding river health are inherently linked to holistic concepts of water security. The measurement of aquatic biota provides a valuable tool for managers to understand progress toward achieving ecological water security objectives. This paper provides a comprehensive review of the reference condition approach to river health assessment, using the development of the Australian River Assessment System (AUSRIVAS) as a case study. We make the link between the biological assessment of river health and assessment of ecological water security, and suggest that such an approach provides a way of reporting that is relevant to the contribution made by ecosystems to water security. The reference condition approach, which is the condition representative of minimally disturbed sites organized by selected physical, chemical, and biological characteristics, is most important for assessing ecological water security objectives.
基金the National Key Basic Research and Development (973) Program of China (No. 2006CB403407)
文摘Aquatic ecosystems require ecological water allocation to prevent from being damaged by natural disasters and undue exploitation. This paper discusses and estimates the ecological water requirements (EWRs) of typical areas in the Huaihe Basin to determine rational allocations of water resources and pro- mote regional improvements of the ecological environment. The main river course, including Hongze Lake and Nansi Lake, was selected as the study subject. Calculational methods for the river and lake EWRs were based on the reasonableness of the results and data availability. The monthly guarantee rate method was used to calculate monthly, flood period, non-flood period, and annual EWRs for the main river course and the main tributaries at two different guarantee rates. The minimum water level method was used to calculate annual EWRs for Hongze Lake and the upper and lower Nansi Lake of 1.521×10^9 m^3, 0.637×10^9 m^3, and 0.306×10^9 m^3. The results were used to evaluate the rationality of the quantity of water resources allocated to ecological uses in the Huaihe Basin during 1998-2003. The result shows that the present water resource allocations in the Huaihe Basin cannot satisfy the basic ecological requirements for some years, especially years with less precipitation.