In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gau...In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.展开更多
Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to dev...Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to develop efficacious strategies or procedure to assess the process performance online. In this paper, we explore the issue of operating optimality assessment for complex industrial processes based on performance-similarity considering nonlinearities and outliers simultaneously, and a general enforced online performance assessment framework is proposed. In the offline part, a new and modified total robust kernel projection to latent structures algorithm,T-KPRM, is proposed and used to evaluate the complex nonlinear industrial process, which can effectively extract the optimal-index-related process variation information from process data and establish assessment models for each performance grades overcoming the effects of outlier. In the online part, the online assessment results can be obtained by calculating the similarity between the online data from a sliding window and each of the performance grades. Furthermore, in order to improve the accuracy of online assessment, we propose an online assessment strategy taking account of the effects of noise and process uncertainties. The Euclidean distance between the sliding data window and the optimal evaluation level is employed to measure the contribution rates of variables, which indicate the possible reason for the non-optimal operating performance. The proposed framework is tested on a real industrial case: dense medium coal preparation process, and the results shows the efficiency of the proposed method comparing to the existing method.展开更多
Applying the economic principles, this article carries out the assessment of economic performancesbrought by forestry research achievement through research and discussion on the assessment method ofeconomic performanc...Applying the economic principles, this article carries out the assessment of economic performancesbrought by forestry research achievement through research and discussion on the assessment method ofeconomic performances of provenance popularization of Pinus massoniana L. The article also brings in theoption method to fully display the value of forest research achievement.展开更多
基金Supported by the National Creative Research Groups Science Foundation of China (60421002) and National Basic Research Program of China (2007CB714000).
文摘In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.
基金Supported by the National Natural Science Foundation of China(61503384,61603393)Natural Science Foundation of Jiangsu(BK20150199,BK20160275)+1 种基金the Foundation Research Funds for the Central Universities(2015QNA65)the Postdoctoral Foundation of Jiangsu Province(1501081B)
文摘Although industrial processes often perform perfectly under design conditions, they may deviate from the optimal operating point owing to parameters drift, environmental disturbances, etc. Thus, it is necessary to develop efficacious strategies or procedure to assess the process performance online. In this paper, we explore the issue of operating optimality assessment for complex industrial processes based on performance-similarity considering nonlinearities and outliers simultaneously, and a general enforced online performance assessment framework is proposed. In the offline part, a new and modified total robust kernel projection to latent structures algorithm,T-KPRM, is proposed and used to evaluate the complex nonlinear industrial process, which can effectively extract the optimal-index-related process variation information from process data and establish assessment models for each performance grades overcoming the effects of outlier. In the online part, the online assessment results can be obtained by calculating the similarity between the online data from a sliding window and each of the performance grades. Furthermore, in order to improve the accuracy of online assessment, we propose an online assessment strategy taking account of the effects of noise and process uncertainties. The Euclidean distance between the sliding data window and the optimal evaluation level is employed to measure the contribution rates of variables, which indicate the possible reason for the non-optimal operating performance. The proposed framework is tested on a real industrial case: dense medium coal preparation process, and the results shows the efficiency of the proposed method comparing to the existing method.
文摘Applying the economic principles, this article carries out the assessment of economic performancesbrought by forestry research achievement through research and discussion on the assessment method ofeconomic performances of provenance popularization of Pinus massoniana L. The article also brings in theoption method to fully display the value of forest research achievement.