Raphidiopsis raciborskii is a notorious bloom-forming and filamentous cyanobacterium that has been extensively investigated into its toxicity,phylogeny,and spreading potential.Studies have demonstrated that this speci...Raphidiopsis raciborskii is a notorious bloom-forming and filamentous cyanobacterium that has been extensively investigated into its toxicity,phylogeny,and spreading potential.Studies have demonstrated that this species has spanned different climates from tropical zones to temperate regions,suggesting that R.raciborskii is becoming a cosmopolitan species in freshwater systems around the world.In fact,it has been proposed that several characteristics of R.raciborskii may explain its spread and dominance.In particular,R.raciborskii is known to display a high extent of physiological plasticity regarding nutrients,light regimes,and te mperature s.Moreover,this species illustrates different ecotype s with distinct environmental requirements.Here,we present an overview of R.raciborskii’s global distribution and adaptation strategy based on the recent findings from genome variance,toxicity,and ecophysiology.The expansion of its geographical distribution can be linked to its genome,toxicity,and ecophysiology.The variable genes are mainly associated with the stress response,phage defense,DNA repair,cell cycle control,and membrane transport,illustrating the species’adaptability in response to changing environments.In fact,the species shows rapid adaptability to low and/or variable nutrient availability,especially changing phosphorus availability.Moreover,the variabilities of strains within the population extend their flexibility to adapt and acclimate to ambient environment.In addition,cylindrospermopsins(CYN)appear to have a potential biological role in facilitating theirs dominance or bloom.These strategies of R.raciborskii make it a challenge to manage in a fre shwater system,reflecting the management of its bloom from further evidence of the complex ecophysiology,toxicity,and genome of this species.展开更多
This review highlights an integrative multidisciplinary eco-physiological, breeding and agronomical research on the tropical starchy root crop cassava conducted at CIAT. Laboratory and field studies have elucidated se...This review highlights an integrative multidisciplinary eco-physiological, breeding and agronomical research on the tropical starchy root crop cassava conducted at CIAT. Laboratory and field studies have elucidated several physio-logical/biochemical mechanisms and plant traits underlying the high productivity in favorable conditions and tolerance to stressful environments, such as prolonged water stress and marginal low-fertility soils. Cassava is endowed with inherent high photosynthetic capacity expressed in near optimal environments that correlates with biological produc- tivity across environments and wide range of germplasm.Field-measured photosynthetic rates were also associated with root yield, particularly under prolonged drought. Extensive rooting systems and stomatal sensitivity to both atmospheric humidity and soil water shortages underlie tolerance to drought. The C4 phosphoenolpyruvate carboxylase (PEPC) was associated with photosynthesis and yield making it a selectable trait, along with leaf duration, particularly for stressful environments. Germplasm from the core collection was screened for tolerance to soils low in P and K, resulting in the identification of several accessions with good levels of tolerance. Cassava has a comparative advantage against major tropical food and energy crops in terms of biological productivity. Results also point to the importance of field research versus greenhouse or growth-chamber studies. In globally warming climate,the crop is predicted to play more role in tropical and subtropical agro-ecosystems. More research is needed under tropical field conditions to understand the interactive responses to elevated carbon dioxide, temperature, soil fertility, and plant water relations.展开更多
Forest structure and function strongly depend on and concurrently influence environmental conditions.Tree performance is generally governed by its genetics and environment;thus,recent hotspots in this field include tr...Forest structure and function strongly depend on and concurrently influence environmental conditions.Tree performance is generally governed by its genetics and environment;thus,recent hotspots in this field include tree genotype×environment,phenotype×environment,and functional trait×environment interactions.The editorial,review,and 22 original research articles in this Special Issue,"Tree ecophysiology in the context of climate change",highlight ecophysiological phenomena(e.g.,climate hormesis,seed germination,tree mortality),processes(e.g.,tree metabolism,photosynthate allocation,nutrient uptake and transport),indicators(e.g.,carbon sequestration,pollutants),measurements(e.g.,thermal time methods,soil quality indices,vegetation spectral index,and near-infrared leaf reflectance),and modeling(e.g.,climate correlations with tree growth,photo synthetic phenology,hydraulic strategies,OliveCan model)in the context of global climate change.Understanding forest-environment interactions from an ecophysiological perspective as climate changes provides insights into species fitness in suboptimal environments,species competition for limited resources,and phylogenetic divergence or convergence of species,and predicting species distributions.展开更多
A summary of a long-term research of Lake Kinneret zooplankton distribution is presented. During 1969-2002 several prominent changes have been recorded in the Kinneret ecosystem. This paper is an attempt aimed at anal...A summary of a long-term research of Lake Kinneret zooplankton distribution is presented. During 1969-2002 several prominent changes have been recorded in the Kinneret ecosystem. This paper is an attempt aimed at analyzing the impact of these ecological changes on the zooplankton communities. The impacts of Phytoplankton, Bacteria, Protozoa, Temperature, Nutrient composition and fish predation on zooplankton dynamics are analyzed. It was found that periodical fluctuations of zooplankton density were mostly affected by fish predation as well as by temperature increase and food availability. Ecological conditions in Lake Kinneret have been modified since early 1990’s and the new conditions were consequently accompanied by zooplankton Homeostatic response. Moreover, as a result of the ecological changes fish intensified their pressure on zoo-plankton. The flexibility of food resource preference by zooplankton enabled its existence but fish predation predominantly controlled their density.展开更多
Marine heatwaves(MHWs)caused by anthropogenic climate change are becoming a key driver of change at the ecosystem level.Thermal conditions experienced by marine organisms across their distribution,particularly towards...Marine heatwaves(MHWs)caused by anthropogenic climate change are becoming a key driver of change at the ecosystem level.Thermal conditions experienced by marine organisms across their distribution,particularly towards the equator,are likely to approach their physiological limits,resulting in extensive mortality and subsequent changes at the population level.Populations at the margins of their species’distribution are thought to be more sensitive to climate-induced environmental pressures than central populations,but our understanding of variability in fitness-related physiological traits in trailing versus leading-edge populations is limited.In a laboratory simulation study,we tested whether two leading(Iceland)and two trailing(Spain)peripheral populations of the intertidal macroalga Corallina officinalis display different levels of maximum potential quantum efficiency(Fv/Fm)resilience to current and future winter MHWs scenarios.Our study revealed that ongoing and future local winter MHWs will not negatively affect leading-edge populations of C.officinalis,which exhibited stable photosynthetic efficiency throughout the study.Trailing edge populations showed a positive though non-significant trend in photosynthetic efficiency throughout winter MHWs exposure.Poleward and equatorward populations did not produce significantly different results,with winter MHWs having no negative affect on Fv/Fm of either population.Additionally,we found no long-term regional or population-level influence of a winter MHWs on this species’photosynthetic efficiency.Thus,we found no statistically significant difference in thermal stress responses between leading and trailing populations.Nonetheless,C.officinalis showed a trend towards higher stress responses in southern than northern populations.Because responses rest on a variety of local population traits,they are difficult to predict based solely on thermal pressures.展开更多
Photosynthetic rate ( P n ), transpiration rate ( E ), stomatal conductance ( g s ), water use efficiency ( WUE ), intercellular CO 2( C i ) and leaf water potential ( Ψ ) in varieties of soybean ( G...Photosynthetic rate ( P n ), transpiration rate ( E ), stomatal conductance ( g s ), water use efficiency ( WUE ), intercellular CO 2( C i ) and leaf water potential ( Ψ ) in varieties of soybean ( Glycine max (L.) Merr.) measured in the past three decades (1970s, 1980s and 1990s) and their inter_relationships were analyzed. These parameters of soybean changed with development stages. It is shown that there was a strongly positive relationship between the yield of soybean and its net photosynthetic rate. Soybean varieties with high yield potential had higher P n , g s and Ψ than those with low yield potential. Their values of C i were remarkably lower. Such relationship was especially remarkable at the critical stage of pod_bearing. P n of soybean of high yield was obviously higher than that of low yield. Of the different stages, the highest P n was found in the pod_bearing stage and other values were higher, too. P n and Ψ of modern soybean varieties were higher and such was continuing. Increased partitioning of carbon to seed and the size of sink may also be important for yield formation when P n values were remarkably higher in the pod_bearing stage.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.42177055,41877410)the Chongqing Postgraduate Scientifi c Research Innovation Project(Nos.CYS21106,CYS20105)。
文摘Raphidiopsis raciborskii is a notorious bloom-forming and filamentous cyanobacterium that has been extensively investigated into its toxicity,phylogeny,and spreading potential.Studies have demonstrated that this species has spanned different climates from tropical zones to temperate regions,suggesting that R.raciborskii is becoming a cosmopolitan species in freshwater systems around the world.In fact,it has been proposed that several characteristics of R.raciborskii may explain its spread and dominance.In particular,R.raciborskii is known to display a high extent of physiological plasticity regarding nutrients,light regimes,and te mperature s.Moreover,this species illustrates different ecotype s with distinct environmental requirements.Here,we present an overview of R.raciborskii’s global distribution and adaptation strategy based on the recent findings from genome variance,toxicity,and ecophysiology.The expansion of its geographical distribution can be linked to its genome,toxicity,and ecophysiology.The variable genes are mainly associated with the stress response,phage defense,DNA repair,cell cycle control,and membrane transport,illustrating the species’adaptability in response to changing environments.In fact,the species shows rapid adaptability to low and/or variable nutrient availability,especially changing phosphorus availability.Moreover,the variabilities of strains within the population extend their flexibility to adapt and acclimate to ambient environment.In addition,cylindrospermopsins(CYN)appear to have a potential biological role in facilitating theirs dominance or bloom.These strategies of R.raciborskii make it a challenge to manage in a fre shwater system,reflecting the management of its bloom from further evidence of the complex ecophysiology,toxicity,and genome of this species.
文摘This review highlights an integrative multidisciplinary eco-physiological, breeding and agronomical research on the tropical starchy root crop cassava conducted at CIAT. Laboratory and field studies have elucidated several physio-logical/biochemical mechanisms and plant traits underlying the high productivity in favorable conditions and tolerance to stressful environments, such as prolonged water stress and marginal low-fertility soils. Cassava is endowed with inherent high photosynthetic capacity expressed in near optimal environments that correlates with biological produc- tivity across environments and wide range of germplasm.Field-measured photosynthetic rates were also associated with root yield, particularly under prolonged drought. Extensive rooting systems and stomatal sensitivity to both atmospheric humidity and soil water shortages underlie tolerance to drought. The C4 phosphoenolpyruvate carboxylase (PEPC) was associated with photosynthesis and yield making it a selectable trait, along with leaf duration, particularly for stressful environments. Germplasm from the core collection was screened for tolerance to soils low in P and K, resulting in the identification of several accessions with good levels of tolerance. Cassava has a comparative advantage against major tropical food and energy crops in terms of biological productivity. Results also point to the importance of field research versus greenhouse or growth-chamber studies. In globally warming climate,the crop is predicted to play more role in tropical and subtropical agro-ecosystems. More research is needed under tropical field conditions to understand the interactive responses to elevated carbon dioxide, temperature, soil fertility, and plant water relations.
基金the Excellence Action Plan for China STM Journals(EAPCSTMJ-C-077)International Infl uence Promotion Project of China STM Journals(Journal of Forestry ResearchPIIJ2-B-18).
文摘Forest structure and function strongly depend on and concurrently influence environmental conditions.Tree performance is generally governed by its genetics and environment;thus,recent hotspots in this field include tree genotype×environment,phenotype×environment,and functional trait×environment interactions.The editorial,review,and 22 original research articles in this Special Issue,"Tree ecophysiology in the context of climate change",highlight ecophysiological phenomena(e.g.,climate hormesis,seed germination,tree mortality),processes(e.g.,tree metabolism,photosynthate allocation,nutrient uptake and transport),indicators(e.g.,carbon sequestration,pollutants),measurements(e.g.,thermal time methods,soil quality indices,vegetation spectral index,and near-infrared leaf reflectance),and modeling(e.g.,climate correlations with tree growth,photo synthetic phenology,hydraulic strategies,OliveCan model)in the context of global climate change.Understanding forest-environment interactions from an ecophysiological perspective as climate changes provides insights into species fitness in suboptimal environments,species competition for limited resources,and phylogenetic divergence or convergence of species,and predicting species distributions.
文摘A summary of a long-term research of Lake Kinneret zooplankton distribution is presented. During 1969-2002 several prominent changes have been recorded in the Kinneret ecosystem. This paper is an attempt aimed at analyzing the impact of these ecological changes on the zooplankton communities. The impacts of Phytoplankton, Bacteria, Protozoa, Temperature, Nutrient composition and fish predation on zooplankton dynamics are analyzed. It was found that periodical fluctuations of zooplankton density were mostly affected by fish predation as well as by temperature increase and food availability. Ecological conditions in Lake Kinneret have been modified since early 1990’s and the new conditions were consequently accompanied by zooplankton Homeostatic response. Moreover, as a result of the ecological changes fish intensified their pressure on zoo-plankton. The flexibility of food resource preference by zooplankton enabled its existence but fish predation predominantly controlled their density.
基金The Fundação para a Ciência e Tecnologia(FCT-MEC,Portugal)under contract No.UIDB/04326/2020 awarded to Gerardo Zardithe South African Research Chairs Initiative(SARChI)of the Department of Science and Technology and the National Research Foundation of South Africa under contract No.64801 awarded to Christopher McQuaid+1 种基金the Fund of European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie contract No.101034329the WINNINGNormandy Program supported by the Normandy Region for Gerardo Zardi.
文摘Marine heatwaves(MHWs)caused by anthropogenic climate change are becoming a key driver of change at the ecosystem level.Thermal conditions experienced by marine organisms across their distribution,particularly towards the equator,are likely to approach their physiological limits,resulting in extensive mortality and subsequent changes at the population level.Populations at the margins of their species’distribution are thought to be more sensitive to climate-induced environmental pressures than central populations,but our understanding of variability in fitness-related physiological traits in trailing versus leading-edge populations is limited.In a laboratory simulation study,we tested whether two leading(Iceland)and two trailing(Spain)peripheral populations of the intertidal macroalga Corallina officinalis display different levels of maximum potential quantum efficiency(Fv/Fm)resilience to current and future winter MHWs scenarios.Our study revealed that ongoing and future local winter MHWs will not negatively affect leading-edge populations of C.officinalis,which exhibited stable photosynthetic efficiency throughout the study.Trailing edge populations showed a positive though non-significant trend in photosynthetic efficiency throughout winter MHWs exposure.Poleward and equatorward populations did not produce significantly different results,with winter MHWs having no negative affect on Fv/Fm of either population.Additionally,we found no long-term regional or population-level influence of a winter MHWs on this species’photosynthetic efficiency.Thus,we found no statistically significant difference in thermal stress responses between leading and trailing populations.Nonetheless,C.officinalis showed a trend towards higher stress responses in southern than northern populations.Because responses rest on a variety of local population traits,they are difficult to predict based solely on thermal pressures.
文摘Photosynthetic rate ( P n ), transpiration rate ( E ), stomatal conductance ( g s ), water use efficiency ( WUE ), intercellular CO 2( C i ) and leaf water potential ( Ψ ) in varieties of soybean ( Glycine max (L.) Merr.) measured in the past three decades (1970s, 1980s and 1990s) and their inter_relationships were analyzed. These parameters of soybean changed with development stages. It is shown that there was a strongly positive relationship between the yield of soybean and its net photosynthetic rate. Soybean varieties with high yield potential had higher P n , g s and Ψ than those with low yield potential. Their values of C i were remarkably lower. Such relationship was especially remarkable at the critical stage of pod_bearing. P n of soybean of high yield was obviously higher than that of low yield. Of the different stages, the highest P n was found in the pod_bearing stage and other values were higher, too. P n and Ψ of modern soybean varieties were higher and such was continuing. Increased partitioning of carbon to seed and the size of sink may also be important for yield formation when P n values were remarkably higher in the pod_bearing stage.