Using the method of trophic state-composite index (TSI-CI ) and the 12 months of monitoring data in 2010,we carry out initial exploration of the status of ecosystem health in Wuli Lake. First,we select four indicators...Using the method of trophic state-composite index (TSI-CI ) and the 12 months of monitoring data in 2010,we carry out initial exploration of the status of ecosystem health in Wuli Lake. First,we select four indicators,Chla,SD,TP and TN,to conduct trophic state assessment using weighted index method; then after selecting physical,chemical and biological indicators to conduct nondimensionalization processing,we calculate the composite index and conduct comprehensive assessment. The results show that in 2010,the status of ecosystem health in Wuli Lake was the best in July,worst in August; when the composite trophic state indicators with Chla as the representative increase or decrease significantly and cross different nutritional grades,TSI will significantly deviate from CI,and the relationship between the two in the other time is not prominent.展开更多
Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the stu...Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.展开更多
A healthy ecosystem depends on the coordination of ecosystem structure and function.The coordination among ecosystem components,however,is seldom taken into account in current ecosystem health assessments(EHA).Neglect...A healthy ecosystem depends on the coordination of ecosystem structure and function.The coordination among ecosystem components,however,is seldom taken into account in current ecosystem health assessments(EHA).Neglect of such coordination may lead to large degrees of uncertainty in EHA and fail to support ecosystem management.We propose an approach to quantify the level of dynamic mismatching between ecosystem structure and function and the impact on ecosystem health by incorporating the ecosystem coordination index into EHA.The coordination degree is calculated using variation coefficient of six proxies for ecosystem structure and functions.The ecosystem at Jiaozhou Bay,as a microcosm of China's coast,has been documented to fluctuate from healthy to unhealthy status over the past three decades.The results indicate that there is a 3%-17% lower health level than that calculated by common methods used in the literature,indicating that the health of Jiaozhou Bay has become worse than expected.Habitat change contributes 20%-52% to ecosystem mismatches and is the most uncoordinated factor.Mismatch-related declines account for approximately one-fourth of the total ecological declines.Restoration scenarios that aim to resolve ecosystem mismatches could increase efficiency by about 50% compared to restoration scenarios that do not consider mismatches.This study investigates ecological declines in a coastal bay due to 30 years of rapid economic development.In doing so,this study provides novel insights and enhances our understanding of the reasons for failure in ecological restoration.展开更多
基金Supported by Project of Wuxi Municipal Development and Reform Commission (2115019)
文摘Using the method of trophic state-composite index (TSI-CI ) and the 12 months of monitoring data in 2010,we carry out initial exploration of the status of ecosystem health in Wuli Lake. First,we select four indicators,Chla,SD,TP and TN,to conduct trophic state assessment using weighted index method; then after selecting physical,chemical and biological indicators to conduct nondimensionalization processing,we calculate the composite index and conduct comprehensive assessment. The results show that in 2010,the status of ecosystem health in Wuli Lake was the best in July,worst in August; when the composite trophic state indicators with Chla as the representative increase or decrease significantly and cross different nutritional grades,TSI will significantly deviate from CI,and the relationship between the two in the other time is not prominent.
基金jointly funded by National Natural Science Foundation of China (41877398)project of the China Geological Survey (DD20221773)。
文摘Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.
基金supported by the National Natural Science Foundation of China–Shandong Joint Fund of Marine Science Research Centers of China(No.U1406403)the NSFC(No.41306100)the Scientific Research Foundation of Guangxi University(No.XGZ 160281)
文摘A healthy ecosystem depends on the coordination of ecosystem structure and function.The coordination among ecosystem components,however,is seldom taken into account in current ecosystem health assessments(EHA).Neglect of such coordination may lead to large degrees of uncertainty in EHA and fail to support ecosystem management.We propose an approach to quantify the level of dynamic mismatching between ecosystem structure and function and the impact on ecosystem health by incorporating the ecosystem coordination index into EHA.The coordination degree is calculated using variation coefficient of six proxies for ecosystem structure and functions.The ecosystem at Jiaozhou Bay,as a microcosm of China's coast,has been documented to fluctuate from healthy to unhealthy status over the past three decades.The results indicate that there is a 3%-17% lower health level than that calculated by common methods used in the literature,indicating that the health of Jiaozhou Bay has become worse than expected.Habitat change contributes 20%-52% to ecosystem mismatches and is the most uncoordinated factor.Mismatch-related declines account for approximately one-fourth of the total ecological declines.Restoration scenarios that aim to resolve ecosystem mismatches could increase efficiency by about 50% compared to restoration scenarios that do not consider mismatches.This study investigates ecological declines in a coastal bay due to 30 years of rapid economic development.In doing so,this study provides novel insights and enhances our understanding of the reasons for failure in ecological restoration.