Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosyste...Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosystem model(ROMS-CoSiNE)with a dynamic energy budget model for scallops,a Yesso scallop culture ecosystem(YeSCE)model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1,2012 to November 30,2013.Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area.The growth of scallops was slow in winter and midsummer and was limited mainly by temperature.Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn.Generally,the scallops cultured in the north part of the Changhai sea area grew faster than those in the south;and the net growth rate for scallops cultured near the island was signifi cantly higher compare to the others,which is probably correlated to the spatial distribution of food availability.Based on the correlation analysis,the spatial diff erences of the net growth rate were largely aff ected by the length of the match timing of temperatures and food availability.The results of this study provide a scientifi c support for optimizing bottom culture planning and adjusting bottom culture methods.展开更多
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice as...Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.展开更多
This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and h...This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.展开更多
Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resul...Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variati...Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.展开更多
This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa re...This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .展开更多
Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM ski...Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.展开更多
Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and ...Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.展开更多
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation...For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.展开更多
An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framew...An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framework of SM is developed into the interactively qualitative and quantitative simulation model presented in this paper, which makes it possible to break down a complex urban ecosystem into simple and visual quantitative or qualitative relationships between the factors. By studying the dynamic responses of the system to the changes of the inputs and parameters of the model, future trends in urban development can be predicted and strategies formulated. The whole process is realized on micro-computer in the course of man-computer interaction. Its potential use is shown in a case of Tianjin City.展开更多
A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river ...A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.展开更多
Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show tha...Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show that there exists only desert regime without grasses if the precipitation p is less than a critical value pc; the grass biomass continuously depends on p if the interaction between grass biomass and the soil wetness is weak, but the strong interaction results in the bifurcation of grass biomass in the vicinity of pc: the grass biomass is rich as p > pc, but it becomes desertification as p<pc. Periodic solutions also exist in the model, if the seasonal cycle of model's parameters is introduced. An improved model consists of three variables, i.e. the living grass biomass x, the nonliving grass biomass accumulated on the ground surface y and the soil wetness z. The behaviours of such three variables model are more complicated. The initial values of y and z play a very important role.展开更多
An experiment about the effect of diesel oil pollution on the model benthic ecosystem was conducted inthe land-based tank at the 3rd Institute of Oceanography, State Oceanic Administration, in Xiamen, added with No.0 ...An experiment about the effect of diesel oil pollution on the model benthic ecosystem was conducted inthe land-based tank at the 3rd Institute of Oceanography, State Oceanic Administration, in Xiamen, added with No.0 diesel oil at concentrations of 5, 25, 125, 625 mg/dm3 in water of series sub-tanks for 16 h. The changes in polychaete community were studied in the period of two weeks with results that though all concentrations did not basically altered the population structure and composition, the total biomass decreased significantly and individualstended to be smaller in size. The average weight of individual decreased with the increase of diesel pollutant stress.展开更多
Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and short...Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.展开更多
Mountain ecosystems play an essential role in supporting regional sustainable development and improving local ecological environments. However, economic development in mountainous areas has long been lagging, and mult...Mountain ecosystems play an essential role in supporting regional sustainable development and improving local ecological environments. However, economic development in mountainous areas has long been lagging, and multiple conflicts related to resource assurance, ecological protection, and economic development have emerged. An accurate grasp of the current status and evolutionary trends of mountain ecosystems is essential to enhance the overall benefits of ecosystem services and maintain regional ecological security. Based on the In VEST(Integrated Valuation of Ecosystem Services and Trade-offs) model, this study analyzed the spatiotemporal evolution patterns and the trade-offs and synergies among ecosystem services(ES) in the Dabie Mountains Area(DMA) of eastern China. The Markov-PLUS(Patch-generating Land Use Simulation) model was used to conduct a multi-scenario simulation of the area's future development. Water yield(WY) and soil conservation(SC) had overall increasing trends during 2000-2020, carbon storage(CS)decreased overall but slowed with time, and habitat quality(HQ) increased and then decreased. The ecological protection scenario is the best scenario for improving ES in the DMA by 2030;compared to 2020, the total WY would decrease by 3.77 × 10^(8) m^(3), SC would increase by 0.65 × 10^(6) t, CS would increase by 1.33 × 10^(6) t, and HQ would increase by 0.06%. The comprehensive development scenario is the second-most effective scenario for ecological improvement, while the natural development scenario did not have a significant effect. However, as the comprehensive development scenario considers both environmental protection and economic development, which are both vital for the sustainable development of the mountainous areas, this scenario is considered the most suitable path for future development. There are trade-offs between WY, CS, and HQ, while there are synergies between SC, CS, and HQ. Spatially, the DMA's central core district is the main strong synergistic area, the marginal zone is the weak synergistic area, and trade-offs are mainly distributed in the transition zone.展开更多
The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treat...The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treatments at harvest were detected respectively. Most of 14C-F in soil existed in upper layer and that in plants appeared in shoots. The extractable residues in cargo rice were 0.36 and 0.58 ppm in two treatments respectively. 14C- residues (14C- R) were concentrated in bones, next viscera, meat and scales. Total 14C-R in meat were 0.92 and 1.77 ppm at harvest. Comparing two treatments, the residue dynamics of fenitrothion in water, soil, plants and fish were similar. 14C- R in water and soil after harvest affected the rice- fish ecosystem in the next season. However, the extractable 14C- R in cargo rice, soil and water were very low. Fenitrothion 14C- fenitrothion Rice- fish Model展开更多
基金Supported by the National Key Research and Development Program of China(Nos.2017YFC1404403,2016YFC1401602)the National Natural Science Foundation of China(No.41806018)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050502)。
文摘Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosystem model(ROMS-CoSiNE)with a dynamic energy budget model for scallops,a Yesso scallop culture ecosystem(YeSCE)model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1,2012 to November 30,2013.Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area.The growth of scallops was slow in winter and midsummer and was limited mainly by temperature.Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn.Generally,the scallops cultured in the north part of the Changhai sea area grew faster than those in the south;and the net growth rate for scallops cultured near the island was signifi cantly higher compare to the others,which is probably correlated to the spatial distribution of food availability.Based on the correlation analysis,the spatial diff erences of the net growth rate were largely aff ected by the length of the match timing of temperatures and food availability.The results of this study provide a scientifi c support for optimizing bottom culture planning and adjusting bottom culture methods.
基金supported by North Pacific Research Board(NPRB) grant 607(paper contribution number 202)NSF grant ARC-0652838+1 种基金DOE/EPSCoR grant DE-FG02-08ER46502.This is GLERL Contribution No.1499 and DOE/EPS-CoRInternational Arctic Research Center,University of Alaska Fairbanks supported this study through the JAMSTEC-IARC Research Agreement.
文摘Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.
文摘This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
基金Under the auspices of the National Natural Science Fundation (No.41901121,42276234)Open Funding of Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research (No.LHGTXT-2024-004)+1 种基金Science and Technology Major Project of Ningbo (No.2022Z181)Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources (No.2023CZEPK04)。
文摘Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.
基金supported by the National Natural Science Foundation of China(Nos.G49790010 and 40476045).
文摘Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.
文摘This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .
基金Supported by the National Natural Science Foundation of China(Nos.41206111,41206112)
文摘Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.
基金supported by the International Science & Technology Cooperation Program of China (2010DFA92720-10)the "Hundred Talents Program" of the Chinese Academy of Sciences (Y174131001)supported by the National Basic Research Program of China (2009CB825105)
文摘Arid and semiarid ecosystems, or dryland, are important to global biogeochemical cycles. Dryland's community structure and vegetation dynamics as well as biogeochemical cycles are sensitive to changes in climate and atmospheric composition. Vegetation dynamic models has been applied in global change studies, but the com- plex interactions among the carbon (C), water, and nitrogen (N) cycles have not been adequately addressed in the current models. In this study, a process-based vegetation dynamic model was developed to study the responses of dryland ecosystems to environmental changes, emphasizing on the interactions among the C, water, and N proc- esses. To address the interactions between the C and water processes, it not only considers the effects of annual precipitation on vegetation distribution and soil moisture on organic matter (SOM) decomposition, but also explicitly models root competition for water and the water compensation processes. To address the interactions between C and N processes, it models the soil inorganic mater processes, such as N mineralization/immobilization, denitrifica- tion/nitrification, and N leaching, as well as the root competition for soil N. The model was parameterized for major plant functional types and evaluated against field observations.
基金the National Basic Research Program of China (973 Program) ( 2007CB407206)the National Key Technologies Research and Develop-ment Program in the Eleventh Five-Year Plan of China (2006BAC01A11)
文摘For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.
基金It is a part of CERP (Cooperative Ecologioal Research Project) supported by UNESCO.
文摘An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framework of SM is developed into the interactively qualitative and quantitative simulation model presented in this paper, which makes it possible to break down a complex urban ecosystem into simple and visual quantitative or qualitative relationships between the factors. By studying the dynamic responses of the system to the changes of the inputs and parameters of the model, future trends in urban development can be predicted and strategies formulated. The whole process is realized on micro-computer in the course of man-computer interaction. Its potential use is shown in a case of Tianjin City.
基金supported by Key Subject Fund of Shanghai Education Committee (No. J50702)Open Foundation of the Key Subject in Environmental Engineering of Shanghai Ocean University(No. B820609000404)Initial Foundation for Ph. D. of ShanghaiOcean University (No. B820607000402)
文摘A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.
文摘Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show that there exists only desert regime without grasses if the precipitation p is less than a critical value pc; the grass biomass continuously depends on p if the interaction between grass biomass and the soil wetness is weak, but the strong interaction results in the bifurcation of grass biomass in the vicinity of pc: the grass biomass is rich as p > pc, but it becomes desertification as p<pc. Periodic solutions also exist in the model, if the seasonal cycle of model's parameters is introduced. An improved model consists of three variables, i.e. the living grass biomass x, the nonliving grass biomass accumulated on the ground surface y and the soil wetness z. The behaviours of such three variables model are more complicated. The initial values of y and z play a very important role.
文摘An experiment about the effect of diesel oil pollution on the model benthic ecosystem was conducted inthe land-based tank at the 3rd Institute of Oceanography, State Oceanic Administration, in Xiamen, added with No.0 diesel oil at concentrations of 5, 25, 125, 625 mg/dm3 in water of series sub-tanks for 16 h. The changes in polychaete community were studied in the period of two weeks with results that though all concentrations did not basically altered the population structure and composition, the total biomass decreased significantly and individualstended to be smaller in size. The average weight of individual decreased with the increase of diesel pollutant stress.
基金supported by the National Natural Science Foundation of China [Grant number 41371176]the Fundamental Research Funds for the Central Universities[Grant number lzujbky_2017_it91]
文摘Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.
基金Under the auspices of National Natural Science Foundation of China (No. U2102209)。
文摘Mountain ecosystems play an essential role in supporting regional sustainable development and improving local ecological environments. However, economic development in mountainous areas has long been lagging, and multiple conflicts related to resource assurance, ecological protection, and economic development have emerged. An accurate grasp of the current status and evolutionary trends of mountain ecosystems is essential to enhance the overall benefits of ecosystem services and maintain regional ecological security. Based on the In VEST(Integrated Valuation of Ecosystem Services and Trade-offs) model, this study analyzed the spatiotemporal evolution patterns and the trade-offs and synergies among ecosystem services(ES) in the Dabie Mountains Area(DMA) of eastern China. The Markov-PLUS(Patch-generating Land Use Simulation) model was used to conduct a multi-scenario simulation of the area's future development. Water yield(WY) and soil conservation(SC) had overall increasing trends during 2000-2020, carbon storage(CS)decreased overall but slowed with time, and habitat quality(HQ) increased and then decreased. The ecological protection scenario is the best scenario for improving ES in the DMA by 2030;compared to 2020, the total WY would decrease by 3.77 × 10^(8) m^(3), SC would increase by 0.65 × 10^(6) t, CS would increase by 1.33 × 10^(6) t, and HQ would increase by 0.06%. The comprehensive development scenario is the second-most effective scenario for ecological improvement, while the natural development scenario did not have a significant effect. However, as the comprehensive development scenario considers both environmental protection and economic development, which are both vital for the sustainable development of the mountainous areas, this scenario is considered the most suitable path for future development. There are trade-offs between WY, CS, and HQ, while there are synergies between SC, CS, and HQ. Spatially, the DMA's central core district is the main strong synergistic area, the marginal zone is the weak synergistic area, and trade-offs are mainly distributed in the transition zone.
文摘The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treatments at harvest were detected respectively. Most of 14C-F in soil existed in upper layer and that in plants appeared in shoots. The extractable residues in cargo rice were 0.36 and 0.58 ppm in two treatments respectively. 14C- residues (14C- R) were concentrated in bones, next viscera, meat and scales. Total 14C-R in meat were 0.92 and 1.77 ppm at harvest. Comparing two treatments, the residue dynamics of fenitrothion in water, soil, plants and fish were similar. 14C- R in water and soil after harvest affected the rice- fish ecosystem in the next season. However, the extractable 14C- R in cargo rice, soil and water were very low. Fenitrothion 14C- fenitrothion Rice- fish Model