Pluripotent stem cells(PSCs) are able to differentiate into several cell types, including pancreatic β cells. Differentiation of pancreatic β cells depends on certain transcription factors, which function in a coord...Pluripotent stem cells(PSCs) are able to differentiate into several cell types, including pancreatic β cells. Differentiation of pancreatic β cells depends on certain transcription factors, which function in a coordinated way during pancreas development. The existing protocols for in vitro differentiation produce pancreatic β cells, which are not highly responsive to glucose stimulation except after their transplantation into immune-compromised mice and allowing several weeks for further differentiation to ensure the maturation of these cells in vivo. Thus, although the substantial improvement that has been made for the differentiation of induced PSCs and embryonic stem cells toward pancreatic β cells, several challenges still hindering their full generation. Here, we summarize recent advances in the differentiation of PSCs into pancreatic β cells and discuss the challenges facing their differentiation as well as the different applications of these potential PSC-derived β cells.展开更多
Neuroprotection studies have shown that induced pluripotent stem(iPS)cells have the possibility to transform neuroprotection research.In the present study,iPS cells were generated from human renal epithelial cells and...Neuroprotection studies have shown that induced pluripotent stem(iPS)cells have the possibility to transform neuroprotection research.In the present study,iPS cells were generated from human renal epithelial cells and were then differentiated into neurons.Cells in the iPScell group were maintained in stem cell medium.In contrast,cells in the iPS-neuron group were first maintained in neural induction medium and expansion medium containing ROCK inhibitors,and then cultivated in neuronal differentiation medium and neuronal maturation medium to induce the neural stem cells to differentiate into neurons.The expression of relevant markers was compared at different stages of differentiation.Immunofluorescence staining revealed that cells in the iPS-neuron group expressed the neural stem cell markers SOX1 and nestin on day 11 of induction,and neuronal markers TUBB3 and NeuN on day 21 of induction.Polymerase chain reaction results demonstrated that,compared with the iPS-cell group,TUBB3 gene expression in the iPS-neuron group was increased 15.6-fold.Further research revealed that,compared with the iPS-cell group,the gene expression and immunoreactivity of mu opioid receptor in the iPS-neuron group were significantly increased(38.3-fold and 5.7-fold,respectively),but those of kappa opioid receptor had only a slight change(1.33-fold and 1.57-fold increases,respectively).Together,these data indicate that human iPS cells can be induced into mu opioid receptor-and kappa opioid receptor-expressing neurons,and that they may be useful to simulate human opioid receptor function in vitro and explore the underlying mechanisms of human conditions.展开更多
Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneou...Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.展开更多
An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducib...An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport.Induced-pluripotent stem cell(i PSC) technology provides reproducible cell resources for in vitro BBB modeling.Here, we generated a human in vitro BBB model by differentiating the human i PSC(hi PSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins(ZO-1,claudin-5, and occludin) and endothelial markers(von Willebrand factor and Ulex), as well as high transendothelial electrical resistance(TEER)(1560 X.cm2±230 X.cm2) and c-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model(2970 X.cm2 to 4185 X.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hi PSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells,including P-glycoprotein(Pgp) and breast cancer resistant protein(BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds(R2= 0.982 and R2= 0.9973,respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.展开更多
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant num...A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.展开更多
文摘Pluripotent stem cells(PSCs) are able to differentiate into several cell types, including pancreatic β cells. Differentiation of pancreatic β cells depends on certain transcription factors, which function in a coordinated way during pancreas development. The existing protocols for in vitro differentiation produce pancreatic β cells, which are not highly responsive to glucose stimulation except after their transplantation into immune-compromised mice and allowing several weeks for further differentiation to ensure the maturation of these cells in vivo. Thus, although the substantial improvement that has been made for the differentiation of induced PSCs and embryonic stem cells toward pancreatic β cells, several challenges still hindering their full generation. Here, we summarize recent advances in the differentiation of PSCs into pancreatic β cells and discuss the challenges facing their differentiation as well as the different applications of these potential PSC-derived β cells.
基金This work was supported by the National Natural Science Foundation of China,No.81301065(to XC)the Talent Training Plan of Beijing,No.D003034000031(to XC).
文摘Neuroprotection studies have shown that induced pluripotent stem(iPS)cells have the possibility to transform neuroprotection research.In the present study,iPS cells were generated from human renal epithelial cells and were then differentiated into neurons.Cells in the iPScell group were maintained in stem cell medium.In contrast,cells in the iPS-neuron group were first maintained in neural induction medium and expansion medium containing ROCK inhibitors,and then cultivated in neuronal differentiation medium and neuronal maturation medium to induce the neural stem cells to differentiate into neurons.The expression of relevant markers was compared at different stages of differentiation.Immunofluorescence staining revealed that cells in the iPS-neuron group expressed the neural stem cell markers SOX1 and nestin on day 11 of induction,and neuronal markers TUBB3 and NeuN on day 21 of induction.Polymerase chain reaction results demonstrated that,compared with the iPS-cell group,TUBB3 gene expression in the iPS-neuron group was increased 15.6-fold.Further research revealed that,compared with the iPS-cell group,the gene expression and immunoreactivity of mu opioid receptor in the iPS-neuron group were significantly increased(38.3-fold and 5.7-fold,respectively),but those of kappa opioid receptor had only a slight change(1.33-fold and 1.57-fold increases,respectively).Together,these data indicate that human iPS cells can be induced into mu opioid receptor-and kappa opioid receptor-expressing neurons,and that they may be useful to simulate human opioid receptor function in vitro and explore the underlying mechanisms of human conditions.
基金supported by the National Natural Science Foundation of China,No. 30770754
文摘Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.
文摘An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport.Induced-pluripotent stem cell(i PSC) technology provides reproducible cell resources for in vitro BBB modeling.Here, we generated a human in vitro BBB model by differentiating the human i PSC(hi PSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins(ZO-1,claudin-5, and occludin) and endothelial markers(von Willebrand factor and Ulex), as well as high transendothelial electrical resistance(TEER)(1560 X.cm2±230 X.cm2) and c-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model(2970 X.cm2 to 4185 X.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hi PSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells,including P-glycoprotein(Pgp) and breast cancer resistant protein(BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds(R2= 0.982 and R2= 0.9973,respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.
基金Supported by The Charles Sturt University Writing Up Award
文摘A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.