The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable non...The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable nonlinear evolution equations.It is common knowledge that the Korteweg de Vries(KdV) equation [1] (1)has been proposed as model equation for the weakly nonlinear long waves which occur in many different physical systems; the Kuramoto-Sivashinsky (KS) equationis one of the simplest nonliaear partial differential equations that exhibit Chaotic behavior frequently encounted in the study of continous media [2-4] . Many interesting mathematical and physical properties of eqs. (1) and (2) have been studied widely. But, in several problems where a lonq wavelength oscilatory instability is found, the noulineai evolution of the perturbations near rriticality is governed by the dispersion modified Kuramoto-Sivashi nsky equation(3)ft is clear that this equation is a combination of the KdV and展开更多
文摘The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable nonlinear evolution equations.It is common knowledge that the Korteweg de Vries(KdV) equation [1] (1)has been proposed as model equation for the weakly nonlinear long waves which occur in many different physical systems; the Kuramoto-Sivashinsky (KS) equationis one of the simplest nonliaear partial differential equations that exhibit Chaotic behavior frequently encounted in the study of continous media [2-4] . Many interesting mathematical and physical properties of eqs. (1) and (2) have been studied widely. But, in several problems where a lonq wavelength oscilatory instability is found, the noulineai evolution of the perturbations near rriticality is governed by the dispersion modified Kuramoto-Sivashi nsky equation(3)ft is clear that this equation is a combination of the KdV and