期刊文献+
共找到762篇文章
< 1 2 39 >
每页显示 20 50 100
Impact of Sky Conditions on Net Ecosystem Productivity over a “Floating Blanket” Wetland in Southwest China
1
作者 Yamei SHAO Huizhi LIU +4 位作者 Qun DU Yang LIU Jihua SUN Yaohui LI Jinlian LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期355-368,共14页
Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were d... Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions. 展开更多
关键词 diffuse radiation eddy covariance NEP controlling factors WETLAND path analysis
下载PDF
Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau
2
作者 Danrui SHENG Xianhong MENG +8 位作者 Shaoying WANG Zhaoguo LI Lunyu SHANG Hao CHEN Lin ZHAO Mingshan DENG Hanlin NIU Pengfei XU Xiaohu WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1821-1842,共22页
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of... Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates. 展开更多
关键词 carbon cycle eddy covariance measurements ecosystem respiration Q_(10)value Tibetan Plateau climate change
下载PDF
Assessment of CH_(4) flux and its influencing drivers in the rice-wheat agroecosystem of the Huai River Basin,China
3
作者 Xiaolan Yu Fangmin Zhang +3 位作者 Yanqiu Fang Xiaohan Zhao Kaidi Zhang Yanyu Lu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4203-4215,共13页
To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wh... To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wheat rotation system in Anhui Province,China from November 2019 to October 2021.The variations and their drivers were then analyzed with the Akaike information criterion method.CH_(4) flux showed distinct diurnal variations with single peaks during 9:00-13:00 local time.The highest peak was 2.15μg m^(-2)s^(-1)which occurred at 11:00 in the vegetative growth stage in the rice growing season(RGS).CH_(4) flux also showed significant seasonal variations.The average CH_(4)flux in the vegetative growth stage in the RGS(193.8±74.2 mg m^(-2)d^(-1))was the highest among all growth stages.The annual total CH_(4) flux in the non-rice growing season(3.2 g m^(-2))was relatively small compared to that in the RGS(23.9 g m^(-2)).CH_(4) flux increased significantly with increase in air temperature,soil temperature,and soil water content in both the RGS and the non-RGS,while it decreased significantly with increase in vapor pressure deficit in the RGS.This study provided a comprehensive understanding of the CH_(4) flux and its drivers in the rice-wheat rotation agroecosystem in the Huai River Basin of China.In addition,our findings will be helpful for the validation and adjustment of the CH_(4) models in this region. 展开更多
关键词 CH_(4) flux eddy covariance method rice-wheat rotation agroecosystem Huai River Basin
下载PDF
Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields 被引量:1
4
作者 WANG Dong WANG Kai +2 位作者 Eugenio DíAZ-PINS ZHENG Xunhua Klaus BUTTERBACH-BAHL 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第5期381-387,共7页
The soil of subtropical vegetable fields is an important source of the atmospheric greenhouse gas nitrous oxide(N2O). In a field study in subtropical China, the authors used an eddy covariance(EC)system based on a... The soil of subtropical vegetable fields is an important source of the atmospheric greenhouse gas nitrous oxide(N2O). In a field study in subtropical China, the authors used an eddy covariance(EC)system based on a close-path quantum cascade laser(QCL) spectrometer to measure N2O fluxes from a vegetable field. During the experimental period from 9 October 2014 to 18 February 2015,the observed half-hourly N2O fluxes ranged from.10.7 to 1077.4 μg N m^-2h^-1, with a mean value of99.3 μg N m^-2h^-1. The detection limit(95% confidence level) of the EC system for half-hourly fluxes was estimated at 18.5 μg N m^-2h^-1, i.e. smaller than 97.5% of all measured fluxes, and within the range of the lower limit of reported N2O emissions from subtropical vegetable fields. The random uncertainties in the half-hourly fluxes were estimated at 60% on average, of which 62% was due to stochastic variations caused by turbulence and 38% by instrumental noise. The flux systematic uncertainties were estimated at.18% on average, mainly due to the spectral attenuation; however,this negative bias had already been corrected for by calculating half-hourly fluxes. In conclusion,the close-path QCL-based EC technique is capable of measuring the N2O fluxes from the subtropical vegetable fields of China with high reliability and accuracy. 展开更多
关键词 Nitrous oxide flux quantum cascade laser eddy covariance subtropical vegetable field
下载PDF
Eddy Covariance Tilt Corrections over a Coastal Mountain Area in South-east China:Significance for Near-Surface Turbulence Characteristics 被引量:4
5
作者 刘丽 王体健 +4 位作者 孙振海 王勤耕 庄炳亮 韩永 李树 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1264-1278,共15页
Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR... Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes. 展开更多
关键词 complex terrain atmospheric surface layer eddy covariance method tilt correction turbulence characteristics flux-variance similarity
下载PDF
A Re-examination of Density Effects in Eddy Covariance Measurements of CO_2 Fluxes 被引量:1
6
作者 Heping LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期9-16,共8页
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects,... Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems. 展开更多
关键词 eddy covariance flux of CO2 flux correction density effects air-parcel expansion/compression open-path CO2/H2O infrared gas analyzer
下载PDF
Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China 被引量:6
7
作者 王辉民 三枝信子 +3 位作者 祖元刚 王文杰 山本晋 近藤裕昭 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第1期1-10,共10页
The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. T... The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g.m^-2.month ^-1 in June 2004 (simplified expression of g (carbon).m^-2.month^-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g-m^-2.a^-1 (simplified expression of g (carbon).m^-2.a^-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD 〈 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD 〉 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol.m^-2.s^-1kPa -1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol.m^-2.s-1.kPa^-1. Under humid conditions (VPD 〈 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range. 展开更多
关键词 carbon balance eddy covariance method environmental effect larch forest Larix gmelinii
下载PDF
Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau 被引量:12
8
作者 LI Jie JIANG Sha +4 位作者 WANG Bin JIANG Wei-wei TANG Yan-hong DU Ming-yuan GU Song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1396-1401,共6页
To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the e... To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the eddy covariance method. The ratio of annual ET to precipitation (P) of meadow ecosystem was about 60%, but varied greatly with the change of season from summer to winter. The annual ET/P in meadow was lower than that in shrub, steppe and wetland ecosystems of this plateau. The incident solar radiation (Rs) received by the meadow was obviously higher than that of lowland in the same latitude; however the ratio of net radiation (Rn) to Rs with average annual value of 0.44 was significantly lower than that in the same latitude. The average annual ET was about 390 mm for 2002-2005, of which more than 80% occurred in growing season from May to September. The energy consumed on the ET was about 44% of net radiation in growing season, which was lower than that of shrub, steppe and wetland on this plateau. This study demonstrates that the Kobresia meadow may prevent the excessive water loss through evapotranspiration from the ecosystem into the atmosphere in comparison to the shrub, steppe and wetland ecosystems of the Qinghai-Tibetan Plateau. 展开更多
关键词 eddy covariance EVAPOTRANSPIRATION net radiation PRecIPITATION Qinghai-Tibetan Plateau
下载PDF
Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China 被引量:9
9
作者 高志球 卞林根 +2 位作者 谌志刚 Michael SPARROW 张佳华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期365-374,共10页
This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a n... This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (CT) and water vapor (Cq) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations. 展开更多
关键词 turbulent fluxes eddy covariance flux variance non-uniform land surface
下载PDF
Effects of climate and forest age on the ecosystem carbon exchange of afforestation 被引量:8
10
作者 Zhi Chen Guirui Yu Qiufeng Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第2期365-374,共10页
Afforestation is believed to be an effective practice to reduce global warming by sequestering large amounts of carbon in plant biomass and soil.However,the factors that determine the rate of carbon sequestration with... Afforestation is believed to be an effective practice to reduce global warming by sequestering large amounts of carbon in plant biomass and soil.However,the factors that determine the rate of carbon sequestration with afforestation are still poorly understood.We analyzed ecosystem carbon exchange after afforestation based on eddy covariance measurements with the aim to identify factors responsible for the rate of carbon exchange following afforestation.The results indicated that afforestation in the tropical/subtropical and temperate climate zones had greater capacities for carbon sequestration than those in boreal zones.Net ecosystem production(NEP),gross primary production(GPP)and ecosystem respiration(RE)varied greatly with age groups over time.Specifically,NEP was initially less than zero in the\10 year group and then increased to its peak in the 10-20 year group.Afforestation of varied previous land use types and planting of diverse tree species did not result in different carbon fluxes.The general linear model showed that climate zone and age of afforestation were the dominant factors influencing carbon sequestration.These factors jointly controlled 51%,61%and 63%of the variation in NEP,GPP and RE,respectively.Compared to the strong regulation of climate on GPP and RE,NEP showed greater sensitivity to the age of afforestation.These results increase our understanding of the variation in ecosystem carbon exchange of afforestation and suggest that afforestation in subtropical and temperate areas after 20 years would yield greater carbon sink benefits than would afforestation of boreal regions. 展开更多
关键词 AFFORESTATION Carbon sequestration eddy covariance CLIMATE Age
下载PDF
Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert,China 被引量:3
11
作者 SUN Jie HU Wenfeng +4 位作者 WANG Nai'ang ZHAO Liqiang AN Ran NING Kai ZHANG Xunhe 《Journal of Arid Land》 SCIE CSCD 2018年第4期517-533,共17页
Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measuremen... Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert. 展开更多
关键词 eddy covariance energy flux RADIATION EVAPORATION PRecIPITATION LAKE Badain Jaran Desert
下载PDF
The 2012 Flash Drought Threatened US Midwest Agroecosystems 被引量:2
12
作者 JIN Cui LUO Xue +4 位作者 XIAO Xiangming DONG Jinwei LI Xueming YANG Jun ZHAO Deyu 《Chinese Geographical Science》 SCIE CSCD 2019年第5期768-783,共16页
In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as... In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as ‘flash drought’, developed in May with a rapid intensification afterwards, and peaked in mid-July. ~76% of crop region and 60% of grassland and pasture regions have been under moderate to severe dry conditions. This study used multiple lines of evidences, i.e., in-situ AmeriFlux measurements, spatial satellite observations, and scaled ecosystem modeling, to provide independent and complementary analysis on the impact of 2012 flash drought on the US Midwest vegetation greenness and photosynthesis carbon uptake. Three datasets consistently showed that 1) phenological activities of all biomes advanced 1–2 weeks earlier in 2012 compared to the other years of 2010–2014;2) the drought had a more severe impact on agroecosystems(crop and grassland) than on forests;3) the growth of crop and grassland was suppressed from June with significant reduction of vegetation index, sun-induced fluorescence(SIF) and gross primary production(GPP), and did not recover until the end of growing season. The modeling results showed that regional total GPP in 2012 was the lowest(1.76 Pg C/yr) during 2010–2014, and decreased by 63 Tg C compared with the other-year mean. Agroecosystems, accounting for 84% of regional GPP assimilation, were the most impacted by 2012 drought with total GPP reduction of 9%, 7%, 6%, and 29% for maize, soybean, cropland, and grassland, respectively. The frequency and severity of droughts have been predicted to increase in future. The results imply the importance to investigate the influences of flash droughts on vegetation productivity and terrestrial carbon cycling. 展开更多
关键词 food security terrestrial carbon cycling eddy covariance Vegetation Photosynthesis Model sun-induced fluorescence(SIF)
下载PDF
Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements 被引量:1
13
作者 TANG Xuguang LI Hengpeng +4 位作者 LIU Guihua LI Xinyan YAO Li XIE Jing CHANG Shouzhi 《Chinese Geographical Science》 SCIE CSCD 2015年第5期537-548,共12页
As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, whic... As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts. 展开更多
关键词 MOD 17A2 FLUXNET community eddy covariance ec gross primary productivity (GPP) forest ecosystem evaluation
下载PDF
Multi-level CO_(2) fluxes over Beijing megacity with the eddy covariance method 被引量:1
14
作者 Yang Liu Huizhi Liu +1 位作者 Qun Du Lujun Xu 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期28-32,共5页
Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were i... Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were investigated.As a result of the total vehicle control policy from 2011 in Beijing,the growth rate of annual total CO_(2) flux at 140 m is 7.8% from 2008-2010 but 2.3%from 2010-2012.With the minimum vegetation cover and largest population density,the 5-yr average annual total CO_(2) flux at 140 m is largest(6.41 kg C m^(−2) yr^(−1)),compared with that at 47 m(5.78 kg C m^(−2) yr^(−1))and 280 m(3.99 kg C m^(−2) yr^(−1)).With regards to annual total CO_(2) fluxes in Beijing,vehicle numbers and population are the main controlling factors.The measured CO_(2) fluxes were highly dependent on land cover/use in the prevailing wind direction.The CO_(2) fluxes at three layers all correlated positively with road fraction,with the R2 values being 0.69,0.57,and 0.54(P<0.05),respectively.The decreasing fraction of vegetation caused an increasing of the annual total CO_(2) flux,and there was an exponential relationship between them.The annual total CO_(2) fluxes were larger with higher population density. 展开更多
关键词 eddy covariance CO_(2)flux Urban boundary layer Urban climate
下载PDF
Gap Filling of Net Ecosystem CO<sub>2</sub>Exchange (NEE) above Rain-Fed Maize Using Artificial Neural Networks (ANNs) 被引量:1
15
作者 Babak Safa Timothy J. Arkebauer +2 位作者 Qiuming Zhu Andy Suyker Suat Irmak 《Journal of Software Engineering and Applications》 2021年第5期150-171,共22页
<span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amen... <span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [S&V method], and the ANN approach presented by Papale in 2003. The results showed that the RBF network was able to find better fits for missing values compared to the MLP (BP) network and S&V method. In addition, unlike the S&V method, which depends on different gap-filling procedures over the year;the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data;though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).</span> 展开更多
关键词 Gap Filling Net ecosystem Exchange of Carbon Dioxide Artificial Neural Networks eddy covariance system
下载PDF
Eddy covariance measurements of turbulent fluxes in the surf zone
16
作者 Yongfeng Qi Xiaodong Shang +1 位作者 Guiying Chen Linghui Yu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第3期63-72,共10页
Turbulent eddies play a critical role in oceanic flows. Direct measurements of turbulent eddy fluxes beneath the sea surface were taken to study the direction of flux-carrying eddies as a means of supplementing our un... Turbulent eddies play a critical role in oceanic flows. Direct measurements of turbulent eddy fluxes beneath the sea surface were taken to study the direction of flux-carrying eddies as a means of supplementing our understanding of vertical fluxes exchange processes and their relationship to tides. The observations were made at 32 Hz at a water depth of ~1.5 m near the coast of Sanya, China, using an eddy covariance system, which mainly consists of an acoustic doppler velocimeter(ADV) and a fast temperature sensor. The cospectra-fit method-an established semi-empirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves-was used in the presence of surface gravity waves to quantify the turbulent eddy fluxes(including turbulent heat flux and Reynolds stress). As much as 87% of the total turbulent stress and 88% of the total turbulent heat flux were determined as being at band frequencies below those of surface gravity waves. Both the turbulent heat flux and Reynolds stress showed a daily successive variation;the former peaked during the low tide period and the later peaked during the ebb tide period.Estimation of roll-off wavenumbers, k0, and roll-off wavelengths, λ0(where λ0=2π/k0), which were estimated as the horizontal length scales of the dominant flux-carrying turbulent eddies, indicated that the λ0 of the turbulent heat flux was approximately double that of the Reynolds stress. Wavelet analysis showed that both the turbulent heat flux and the Reynolds stress have a close relationship to the semi-diurnal and diurnal tides, and therefore indicate the energy that is transported from tides to turbulence. 展开更多
关键词 eddy covariance TURBULENT FLUXES surface gravity waves cospectrum TIDES
下载PDF
Net Ecosystem CO2 Flux and Effect Factors in Peatland Ecosystem of Central China
17
作者 Ihab Alfadhel Jiwen Ge Sakinatu Issaka 《Journal of Geoscience and Environment Protection》 2020年第8期95-106,共12页
Peatland ecosystems play an important role in the global carbon cycle because they act as a pool or sink for the carbon cycle. However, the relationship between seasonality effect factors and net ecosystem CO<sub&g... Peatland ecosystems play an important role in the global carbon cycle because they act as a pool or sink for the carbon cycle. However, the relationship between seasonality effect factors and net ecosystem CO<sub>2</sub> exchange (NEE) remains to be clarified, particularly for the non-growing season. Here, based on the eddy covariance technique, NEE in the peatland ecosystem of Central China was examined to measure two years’ (2016 and 2017) accumulation of carbon dioxide emissions with contrasting seasonal distribution of environmental factors. Our results demonstrate the cumulative net ecosystem CO<sub>2</sub> emissions during the study period was in the first non-growing season 2.94 ± 4.83 μmolCO<sub>2</sub> m<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2<span style="white-space:nowrap;">.</span></sup>s<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup> with the lowest values in the same year in first growing season was <span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2.79 ± 4.92 μmolCO<sub>2</sub> m<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>2</sup><span style="font-family:" font-size:13.3333px;white-space:normal;"=""><span style="white-space:nowrap;"><sup>.</sup></span></span>s<sup><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup>. The results indicate the effect of seasonal variations of NEE can be directly reflected in daily and seasonal variations in growth and respiration of peatland ecosystem by environmental parameters over different growing stages. 展开更多
关键词 Dajiuhu Peatland ecosystem Respiration eddy covariance Gross Primary Product Net ecosystem CO2 Exchange
下载PDF
A Synoptic Snapshot of the East Cape Eddy(ECE)
18
作者 LIUWei LIUQinyu 《Journal of Ocean University of China》 SCIE CAS 2005年第1期8-13,共6页
A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992... A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific. 展开更多
关键词 east cape eddy (ecE) section P14C subtropical mode water (STMW)
下载PDF
基于REddyProc的干旱区枣林通量数据插补及能量平衡分析
19
作者 乔英 马英杰 辛明亮 《林业科学》 EI CAS CSCD 北大核心 2023年第8期1-11,共11页
【目的】获取完整且有效的枣林通量数据,分析生态系统能量平衡,为评估干旱区枣林生态系统与大气间的能量和物质交换提供理论依据。【方法】选择R语言REddyProc包插补涡度相关法测量的通量数据,采用交叉验证法和能量平衡闭合度评价插补... 【目的】获取完整且有效的枣林通量数据,分析生态系统能量平衡,为评估干旱区枣林生态系统与大气间的能量和物质交换提供理论依据。【方法】选择R语言REddyProc包插补涡度相关法测量的通量数据,采用交叉验证法和能量平衡闭合度评价插补数据质量,并修正热储存项,分析2018、2019年新疆阿克苏地区枣林能量平衡闭合度与能量变化趋势。【结果】1)REddyProc包插补通量数据效果较好,交叉验证的误差统计参数为回归系数b=0.86~0.99、决定系数R^(2)=0.86~0.95、一致性指数d=0.96~0.98、模拟效率EF=0.84~0.92、均方根误差与观测值标准差比率RSR=0.28~0.40;2)经REddyProc包插补后,2018、2019年干旱区枣林能量平衡闭合度分别为73.45%、73.11%,有效能量和可利用能量的决定系数均为0.97;加入热储存项后,能量闭合度分别提高3.72%、2.75%,达77.17%、75.86%,增幅较小;3)各能量分项(净辐射、潜热通量、显热通量、土壤热通量)的日均变化规律在生育期和休眠期相似,日均变化均呈以净辐射变化规律为基础的单峰变化。【结论】干旱区枣林全年能量平衡闭合度符合ChinaFlux范围,热储存项对改善枣林能量平衡闭合度有一定影响,可为研究枣林能量和物质交换提供理论依据。 展开更多
关键词 ReddyProc包 涡度相关法 数据插补 干旱区 枣林 能量平衡
下载PDF
Machine Learning and Regression Analysis Reveal Different Patterns of Influence on Net Ecosystem Exchange at Two Conifer Woodland Sites
20
作者 David A.Wood 《Research in Ecology》 2022年第2期24-50,共27页
Variations in net ecosystem exchange(NEE)of carbon dioxide,and the variables influencing it,at woodland sites over multiple years determine the long term performance of those sites as carbon sinks.In this study,weekly... Variations in net ecosystem exchange(NEE)of carbon dioxide,and the variables influencing it,at woodland sites over multiple years determine the long term performance of those sites as carbon sinks.In this study,weekly-averaged data from two AmeriFlux sites in North America of evergreen woodland,in different climatic zones and with distinct tree and understory species,are evaluated using four multi-linear regression(MLR)and seven machine learning(ML)models.The site data extend over multiple years and conform to the FLUXNET2015 pre-processing pipeline.Twenty influencing variables are considered for site CA-LP1 and sixteen for site US-Mpj.Rigorous k-fold cross validation analysis verifies that all eleven models assessed generate reproducible NEE predictions to varying degrees of accuracy.At both sites,the best performing ML models(support vector regression(SVR),extreme gradient boosting(XGB)and multi-layer perceptron(MLP))substantially outperform the MLR models in terms of their NEE prediction performance.The ML models also generate predicted versus measured NEE distributions that approximate cross-plot trends passing through the origin,confirming that they more realistically capture the actual NEE trend.MLR and ML models assign some level of importance to all influential variables measured but their degree of influence varies between the two sites.For the best performing SVR models,at site CA-LP1,variables air temperature,shortwave radiation outgoing,net radiation,longwave radiation outgoing,shortwave radiation incoming and vapor pressure deficit have the most influence on NEE predictions.At site US-Mpj,variables vapor pressure deficit,shortwave radiation incoming,longwave radiation incoming,air temperature,photosynthetic photon flux density incoming,shortwave radiation outgoing and precipitation exert the most influence on the model solutions.Sensible heat exerts very low influence at both sites.The methodology applied successfully determines the relative importance of influential variables in determining weekly NEE trends at both conifer woodland sites studied. 展开更多
关键词 eddy covariance FLUXNET2015 Weekly NEE trends Variable importance Correlation comparisons NEE prediction
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部