期刊文献+
共找到6,769篇文章
< 1 2 250 >
每页显示 20 50 100
Rock-soil slope stability analysis by two-phase random media and finite elements 被引量:8
1
作者 Yong Liu Huawen Xiao +2 位作者 Kai Yao Jun Hu Hong Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1649-1655,共7页
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul... To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer. 展开更多
关键词 SLOPES stability Numerical computation STATISTICAL analysis finite-element modelling Random fieldS Monte-Carlo simulations
下载PDF
Effect of Types and Orders of Electromagnetic Field Finite Element Meshes on Power Communication Harmonic Parameters Calculation Results of Tubular Hydrogenerators
2
作者 Fan Zhennan Chen Jie +1 位作者 Zhou Zhiting Yang Yong 《China Communications》 SCIE CSCD 2024年第10期288-300,共13页
In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication q... In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators. 展开更多
关键词 calculation results electromagnetic field finite element meshes power communication harmonic parameters tubular hydrogenerator types and orders
下载PDF
Modeling and Simulation of High Frequency Electromagnetics Wave Propagation on Vivaldi Antenna Using Finite Element Method
3
作者 Jean Ndoumbe Nelly Tchuenbou Charles Hubert Kom 《Open Journal of Antennas and Propagation》 2023年第3期49-59,共11页
The simulation of the electromagnetic wave propagation plays an important role in predicting the performance of wireless transmission and communication systems. This research paper performs a numerical simulation usin... The simulation of the electromagnetic wave propagation plays an important role in predicting the performance of wireless transmission and communication systems. This research paper performs a numerical simulation using the finite element method (FEM) to study electromagnetic propagation through both conductive and dielectric media. The simulations are made using the COMSOL Multiphysics software which notably implements the finite element method. The microwave is produced by a Vivaldi antenna at the respective frequencies of 2.6 and 5 GHz and the propagation equation is formulated from Maxwell’s equations. The results obtained show that in the air, strong electric fields are observed in the slot and the micro-strip line for the two frequencies, they are even greater when the wave propagates in the glass and very weak for the copper. The 3D evolutions of the wave in air and glass present comparable values at equal frequencies, the curves being more regular in air (dielectric). The radiation patterns produced for air and glass are directional, with a large main lobe, which is narrower at 5 GHz. For copper, the wave propagation is quite uniform in space, and the radiation patterns show two main lobes with a much larger size at 2.6 GHz than at 5 GHz. The propagation medium would therefore influence the range of values of the gain of the antenna. 展开更多
关键词 Radiated field Propagation Medium MICROWAVE Vivaldi Antenna finite element Method COMSOL Multiphysics
下载PDF
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
4
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
下载PDF
Finite Element Numerical Simulation and PIV Measurement of Flow Field inside Metering-in Spool Valve 被引量:12
5
作者 GAO Dianrong QIAO Haijun LU Xianghui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期102-108,共7页
The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at th... The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage. 展开更多
关键词 flow field spool valve finite element method (FEM) particle image velocimetry (PIV)
下载PDF
STRESS FIELD ANALYSIS OF EXTRA-HEIGHT FORGING DIE USING FINITE ELEMENT METHOD 被引量:3
6
作者 Xiaobo Liu Jianping Tan Youping Yi 《Journal of Central South University》 SCIE EI CAS 1999年第1期60-63,共4页
TheextraheightforgingdieinSouthewestAluminiumFabricationPlantisaspecialdieformakingarmamentandspecialcivil... TheextraheightforgingdieinSouthewestAluminiumFabricationPlantisaspecialdieformakingarmamentandspecialcivilproductsinChina.A... 展开更多
关键词 stress field analysis EXTRA HEIGHT FORGING DIE finite element method
下载PDF
3-D finite element modeling for evolution of stress field and interaction among strong earthquakes in Sichuan-Yunnan region 被引量:3
7
作者 CHEN Hua-ran(陈化然) +11 位作者 CHEN Lian-wang(陈连旺) MA Hong-sheng(马宏生) LI Yi-qun(李轶群) ZHANG Jie-qing(张杰卿) HE Qiao-yun(何巧云) WANG Jian-guo(王建国) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期625-634,共10页
Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By rep... Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction. 展开更多
关键词 D finite element model background stress field stress field caused by fault creep stress field triggered by strong earthquake
下载PDF
Finite element analysis of temperature and stress fields during selective laser melting process of Al−Mg−Sc−Zr alloy 被引量:5
8
作者 Ru-long MA Chao-qun PENG +4 位作者 Zhi-yong CAI Ri-chu WANG Zhao-hui ZHOU Xiao-geng LI Xuan-yang CAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2922-2938,共17页
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe... A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm. 展开更多
关键词 aluminum−magnesium alloy Al−Mg−Sc−Zr alloy selective laser melting finite element analysis temperature field stress field
下载PDF
Neumann stochastic finite element method for calculating temperature field of frozen soil based on random field theory 被引量:3
9
作者 Tao Wang GuoQing Zhou 《Research in Cold and Arid Regions》 CSCD 2013年第4期488-497,共10页
To study the effect of uncertain factors on the temperature field of frozen soil, we propose a method to calculate the spatial average variance from just the point variance based on the local average theory of random ... To study the effect of uncertain factors on the temperature field of frozen soil, we propose a method to calculate the spatial average variance from just the point variance based on the local average theory of random fields. We model the heat transfer coefficient and specific heat capacity as spatially random fields instead of traditional random variables. An analysis for calculating the random temperature field of seasonal frozen soil is suggested by the Neumann stochastic finite element method, and here we provide the computational formulae of mathematical expectation, variance and variable coefficient. As shown in the calculation flow chart, the stochastic finite element calculation program for solving the random temperature field, as compiled by Matrix Laboratory (MATLAB) sottware, can directly output the statistical results of the temperature field of frozen soil. An example is presented to demonstrate the random effects from random field parameters, and the feasibility of the proposed approach is proven by compar- ing these results with the results derived when the random parameters are only modeled as random variables. The results show that the Neumann stochastic finite element method can efficiently solve the problem of random temperature fields of frozen soil based on random field theory, and it can reduce the variability of calculation results when the random parameters are modeled as spatial- ly random fields. 展开更多
关键词 fi'ozen soil Neumann expansion stochastic finite element method random temperature field
下载PDF
Finite element analysis of temperature field during multi-layer multi-pass weld-based rapid prototyping 被引量:2
10
作者 赵慧慧 张广军 +1 位作者 殷子强 吴林 《China Welding》 EI CAS 2011年第4期1-5,共5页
During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-pus... During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-puss weld-based rapid prototyping are investigated using three-dimensional finite element models presented. The single-puss weld-bused rapid prototyping experiment is carried out. Thermal cycles calculated agree with experimental measurements. Furthermore, simulated results indicate that there exist the pre-heating effect of the fore layer and the post-heating effect of the rear layer in the multi-layer multi-pass weld-based rapid prototyping. In the first layer, the heat accumulates obviously. After the first layer, the dimension increase of the high temperature region behind the molten pool is not obvious. The heat diffusion condition in the first layer is the best, the heat diffusion condition in the second layer is the worst, and the heat diffusion conditions in the higher layers improve gradually. 展开更多
关键词 temperature field finite element analysis weld-based rapid prototyping temperature gradient
下载PDF
Simulation of near-fault bedrock strong ground-motion field by explicit finite element method 被引量:1
11
作者 张晓志 胡进军 +1 位作者 谢礼立 王海云 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第6期687-694,共8页
Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combin... Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion. 展开更多
关键词 strong ground-motion field explicit finite element artificial boundary numerical simulation
下载PDF
Induced polarization in a 2.5D marine controlled source electromagnetic field based on the adaptive finite-element method 被引量:1
12
作者 Xu Kai-Jun Sun Jie 《Applied Geophysics》 SCIE CSCD 2018年第2期332-341,365,共11页
The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain fo... The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain forward modeling of marine CSEM that considers the induced polarization. The geoelectrical model is discretized using an unstructured triangular elemental grid that accommodates the complex topography and geoelectrical structures. We use the Cole-Cole model to describe the IP and develop a complex resistivity forward modeling algorithm. We compare the simulation results with published 1D model results and subsequently calculate the electromagnetic field for variable azimuth sources, IP parameters, and topography. Finally, we analyze the IP effect on the marine CSEM field and show that IP of oil reservoirs and topography affects the marine CSEM electromagnetic field. 展开更多
关键词 Controlled source electromagnetic field finite element induced polarizationeffect Cole-Cole model
下载PDF
Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods 被引量:20
13
作者 Yong Liu Wengang Zhang +3 位作者 Lei Zhang Zhiren Zhu Jun Hu Hong Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1657-1664,共8页
A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties.... A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results. 展开更多
关键词 Random field SLOPE stability Factor of safety Statistical analysis finite-element modelling Monte-Carlo simulations
下载PDF
Finite element simulation of three-dimensional temperature field in underwater welding 被引量:1
14
作者 刘习文 王国荣 +1 位作者 石永华 钟继光 《China Welding》 EI CAS 2007年第2期59-65,共7页
Mathematical models of three-dimensional temperature fields in underwater welding with moving heat sources are built. Double ellipsoid Gauss model is proposed as heat sources models. Several factors which affect the t... Mathematical models of three-dimensional temperature fields in underwater welding with moving heat sources are built. Double ellipsoid Gauss model is proposed as heat sources models. Several factors which affect the temperature fields of underwater welding are analyzed. Water has little influence on thermal efftciency. Water convection coefftcient varies with the temperature difference between the water and the workpiece , and water convection makes molten pool freeze quickly. With the increase of water depth, the dimensions of heat sources model should be reduced as arc shrinks. Finite element technology is used to solve mathematical models. ANSYS software is used as finite element tool, and ANSYS Parametric Design Language is used to develop subprograms for loading the moving heat sources and the various convection coefftcients. Experiment results show that computational results by using double ellipsoid Gauss heat sources model accord well with the experimental results. 展开更多
关键词 underwater welding temperature fields finite element method double ellipsoid Gauss heat sources model water convection
下载PDF
Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation 被引量:1
15
作者 郝宽胜 黄松岭 +1 位作者 赵伟 王珅 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期490-497,共8页
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i... This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. 展开更多
关键词 electromagnetic acoustic transducer nondestructive testing circuit-field coupling finite element method
下载PDF
Application of Wavelet Finite Element Method to Simulation of the Temperature Field of Copier Paper 被引量:1
16
作者 YANGSheng-jun MAJun-xing 《International Journal of Plant Engineering and Management》 2002年第4期191-197,共7页
Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copie... Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties. 展开更多
关键词 copier paper temperature field wavelet finite element method SIMULATION
下载PDF
Genetic algorithm-finite element method inversion of the factors determining the recent tectonic stress field of part of East Asia area
17
作者 安美建 石耀霖 李方全 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第3期1-8,共8页
Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to dedu... Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea. 展开更多
关键词 genetic algorithm finite element method (GA FEM) tectonic stress field dynamic genetic algorithm inversion of finite element method
下载PDF
DIRECT SOLUTION BY 2-D AND 3-D FINITE ELEMENT METHOD ON FORWARD PROBLEM OF LOW FREQUENCY CURRENT FIELDS IN INHOMOGENEOUS MEDIA
18
作者 Chen Xiaoguang Nie Zaiping(University of Electronic Science and Technology of China, Chengdu 610054) 《Journal of Electronics(China)》 1998年第2期158-167,共10页
The paper adopts finite element method to analyze the forward problem of low-frequency current fields in inhomogeneous media. Firstly, the direct solution of 2-D and 3-D scalar potential is given. Secondly, the techni... The paper adopts finite element method to analyze the forward problem of low-frequency current fields in inhomogeneous media. Firstly, the direct solution of 2-D and 3-D scalar potential is given. Secondly, the technique of covering finite elements for problems with movement has been presented; namely, when the place of testing point moved, the meshing data will be produced automatically to avoid re-meshing and distortion of the mesh. Thirdly the free and prescribed potential method is used to make the finite element coefficient matrices. Then this paper provides the result of a validity test obtained by simulating the laterolog-3 logging, compared with the numerical model-matching method. Finally, the MLL response is calculated. 展开更多
关键词 finite element METHOD LOW-FREQUENCY current fieldS The technique of COVERING finite elements Electrical LOGGING
下载PDF
Kinematic source model for simulation of near-fault ground motion field using explicit finite element method
19
作者 张晓志 胡进军 +1 位作者 谢礼立 王海云 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期19-28,共10页
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi... This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc. 展开更多
关键词 strong ground motion field explicit finite element numerical simulation kinematic source model
下载PDF
Simulation of Temperature and Flow Field by Three Dimension Finite ElementMethod for Castex Process of AS Wire
20
作者 Zhiyuan Shi1 Wanjun Wang1 +2 位作者 Zhigang Kan2 Jinglin Wen3 Xinhua Wang1(l Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China2 University of AViation and Spaceflight Beijing, Beijing 100083, China3 Northeastern University, 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第4期262-267,共6页
Castex of AS wire is a new technology of near net shape. To study the variation of temperature and velocity of liquid (or semisolid) aluminum during dynamic solidification the numerical simulation was carried out with... Castex of AS wire is a new technology of near net shape. To study the variation of temperature and velocity of liquid (or semisolid) aluminum during dynamic solidification the numerical simulation was carried out with the theory of heat-transfer and hydrodynamics by means of 3-dimensional finite element method. From simulation results, it is found that the variation of temperature and velocityis mainly influenced by the casting temperature of aluminum, rotating speed of Castex wheel and flow of cooling water. Among theseinfluencing factors, the casting temperature distributes most to the length of liquid phase metal. Moreover, the faster the metal solidifies,the higher the metal there moves with the overall trend of descending from the bottom of the wheel to the shoe wall as well as from sidewalls to the center of wheel groove. In comparison with the practical value, the simulation is reliable. 展开更多
关键词 CASTEX dynamic solidification AS wire temperature and flow field finite element method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部