A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method ...Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.展开更多
In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detec...In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images.展开更多
In applications such as image retrieval and recognition, precise edge detection for interested regions plays a decisive role. Existing methods generally take little care about local characteristics, or become time con...In applications such as image retrieval and recognition, precise edge detection for interested regions plays a decisive role. Existing methods generally take little care about local characteristics, or become time consuming if every detail is considered. In the paper, a new method is put forward based on the combination of effective image representation and multiscale wavelet analysis. A new object tree image representation is introduced. Then a series of object trees are constructed based on wavelet transform modulus maxima at different scales in descending order. Computation is only needed for interested regions. Implementation steps are also given with an illustrative example.展开更多
A new method, triplet circular Hough transform, is proposed for circle detection in image processing and pattern recognition. In the method, a curve in an image is first detected. Next, a sequence of three points on t...A new method, triplet circular Hough transform, is proposed for circle detection in image processing and pattern recognition. In the method, a curve in an image is first detected. Next, a sequence of three points on the curve are selected, a sequence of parameters (a,b,r) corresponding to the three points are calculated by solving the circle equation of the curve, and two 2-D accumulators A(a,b) and R(a,b) are accumulated with 1 and r, respectively. Then the parameters {(a, b, r)} of the circles fitting the curve are determined from A(a,b) and R(a,b) by searching for the local maximum over A(a,b). Because no computation loops over center (a, 6) and/or radius r are needed, the method is faster than the basic and directional gradient methods. It needs also much smaller memory for accumulation.展开更多
A mixed scheme based on Wavelet Transformation (WT) is proposed for image edge detection. The scheme combines the wavelet transform and traditional Sobel and LoG (Laplacian of Gaussian) operator edge-detection algorit...A mixed scheme based on Wavelet Transformation (WT) is proposed for image edge detection. The scheme combines the wavelet transform and traditional Sobel and LoG (Laplacian of Gaussian) operator edge-detection algorithms. The precise theory analysis is given to show that the wavelet transformation has an advantage for signal processing. Simulation results show that the new scheme is better than only using the Sobel or LoG methods. Complexity analysis is also given and the conclusion is acceptable, therefore the proposed scheme is effective for edge detection.展开更多
In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by comb...In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.展开更多
An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals ...An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.展开更多
Based on the multiresolution decomposition and local time-frequency analysis of the wavelet transform, the image edge detection by wavelet transform is studied. Two methods are dealt with, which are the channel exclus...Based on the multiresolution decomposition and local time-frequency analysis of the wavelet transform, the image edge detection by wavelet transform is studied. Two methods are dealt with, which are the channel exclusive-OR operation and the high frequency energy-conserving edge detection. In accordance with the contradictory between antinoise ability and detection accuracy, the mutual-energy cross technique for noise suppression is proposed. By computer simulation, the experimental results are obtained on a test image and Lena image. The noise supressing ability is improved and the signal-noise ratio is increased by more than 3dB.展开更多
A new rnultiscale edge detection method is presented, which is based on an effective edge measure. The effective edge measure, used to adaptively adjust the scales of wavelet transform, is defined using the novel feat...A new rnultiscale edge detection method is presented, which is based on an effective edge measure. The effective edge measure, used to adaptively adjust the scales of wavelet transform, is defined using the novel features of image edge obtained from human being vision characteristics. Finally, two experiments show that the proposed algorithm appears to work well.展开更多
The purpose of this work is to analyze the feasibility of using the wavelet transform in the edge detection of digital terrain models (DTM) obtained by Laser Scanner. The Haar wavelet transform and the edge detection ...The purpose of this work is to analyze the feasibility of using the wavelet transform in the edge detection of digital terrain models (DTM) obtained by Laser Scanner. The Haar wavelet transform and the edge detection method called Wavelet Transform Modulus Maxima (WTMM), both implemented in Matlab language, were used. In order to validate and verify the efficiency of WTMM, the edge detection of the same DTM was performed by the Roberts, Sobel-Feldman and Canny methods, chosen due to the wide use in the scientific community in the area of Image Processing and Remote Sensing. The comparison of the results showed superior performance of WTMM in terms of processing time.展开更多
Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method o...Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to the peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.展开更多
For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there...For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.展开更多
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b...To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.展开更多
To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform ...To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).展开更多
This paper puts forward an effective, specific algorithm for edge detection. Based on multi-structure elements of gray mathematics morphology, in the light of difference between noise and edge shape of RS images, the ...This paper puts forward an effective, specific algorithm for edge detection. Based on multi-structure elements of gray mathematics morphology, in the light of difference between noise and edge shape of RS images, the paper establishes multi-structure elements to detect edge by utilizing the grey form transformation principle. Compared with some classical edge detection operators, such as Sobel Edge Detection Operator, LOG Edge Detection Operator, and Canny Edge Detection Operator, the experiment indicates that this new algorithm possesses very good edge detection ability, which can detect edges more effectively, but its noise-resisting ability is relatively low. Because of the bigger noise & remote sensing image, the authors probe into putting forward other edge detection method based on combination of wavelet directivity checkout technology and small-scale Mathematical Morphology finally. So, position at the edge can be accurately located, the noise can be inhibited to a certain extent and the effect of edge detection is obvious.展开更多
In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background,an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima...In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background,an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed.At first,a new Butterworth high pass filter(BHPF) with adaptive cutoff frequency is produced,because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively,and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency.And then,the best decomposition scale is obtained by the level determination function to prevent edge information from missing.At last,edge points are got by double threshold after obtaining the wavelet modulus maxima,and then the edge image is linked by the edge points to ensure the edge continuity and veracity.Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm,and the edge detection algorithm can also detect other defects,and lays the foundation for defecting auto- recognition.展开更多
This paper presents a robust filter called the quaternion Hardy filter(QHF)for color image edge detection.The QHF can be capable of color edge feature enhancement and noise resistance.QHF can be used flexibly by selec...This paper presents a robust filter called the quaternion Hardy filter(QHF)for color image edge detection.The QHF can be capable of color edge feature enhancement and noise resistance.QHF can be used flexibly by selecting suitable parameters to handle different levels of noise.In particular,the quaternion analytic signal,which is an effective tool in color image processing,can also be produced by quaternion Hardy filtering with specific parameters.Based on the QHF and the improved Di Zenzo gradient operator,a novel color edge detection algorithm is proposed;importantly,it can be efficiently implemented by using the fast discrete quaternion Fourier transform technique.From the experimental results,we conclude that the minimum PSNR improvement rate is 2.3%and the minimum SSIM improvement rate is 30.2%on the CSEE database.The experiments demonstrate that the proposed algorithm outperforms several widely used algorithms.展开更多
Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this wo...Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we construct the wavelet, then we present the MP approach which is applied to binary and grey levels images. This method is compared with other methods without noise and in the presence of noise. The experiment results show fhht the MP method for edge detection outPerforms conventional methods even in noisy environments.展开更多
In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike m...In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike moment algorithm is proposed.Non-orthogonal quadratic B-spline wavelet transform algorithm is adopted to get the pixel edge of miniature parts?andthe moment invariant of Zernike moment algorithm is used for refining the pixel edge to get sub-pixel edges.A real-time detectionsystem based on the proposed algorithm for miniature parts is established.The general system structure and operational principle are given,the real-time image acquisition and detection are completed,the results of edge detection are analyzed and the detection precision is evaluated.The results show that parts size can be0.01-10mm and the detection precision reaches0.01%-0.1%.Therefore,the edge of the miniature parts can be accurately identified and the detection precision can be improved to sub-pixel level,which meets the requirements of miniature parts precision detection.展开更多
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
文摘Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.
文摘In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images.
文摘In applications such as image retrieval and recognition, precise edge detection for interested regions plays a decisive role. Existing methods generally take little care about local characteristics, or become time consuming if every detail is considered. In the paper, a new method is put forward based on the combination of effective image representation and multiscale wavelet analysis. A new object tree image representation is introduced. Then a series of object trees are constructed based on wavelet transform modulus maxima at different scales in descending order. Computation is only needed for interested regions. Implementation steps are also given with an illustrative example.
基金Supported by the National Natural Science Foundation of China(No.30070228)
文摘A new method, triplet circular Hough transform, is proposed for circle detection in image processing and pattern recognition. In the method, a curve in an image is first detected. Next, a sequence of three points on the curve are selected, a sequence of parameters (a,b,r) corresponding to the three points are calculated by solving the circle equation of the curve, and two 2-D accumulators A(a,b) and R(a,b) are accumulated with 1 and r, respectively. Then the parameters {(a, b, r)} of the circles fitting the curve are determined from A(a,b) and R(a,b) by searching for the local maximum over A(a,b). Because no computation loops over center (a, 6) and/or radius r are needed, the method is faster than the basic and directional gradient methods. It needs also much smaller memory for accumulation.
基金Supported by the National Defence 973 project(2002HS0604,2002HS0634)
文摘A mixed scheme based on Wavelet Transformation (WT) is proposed for image edge detection. The scheme combines the wavelet transform and traditional Sobel and LoG (Laplacian of Gaussian) operator edge-detection algorithms. The precise theory analysis is given to show that the wavelet transformation has an advantage for signal processing. Simulation results show that the new scheme is better than only using the Sobel or LoG methods. Complexity analysis is also given and the conclusion is acceptable, therefore the proposed scheme is effective for edge detection.
基金Supported by the National Natural Science Foundation of China (No.40071061).
文摘In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.
文摘An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.
文摘Based on the multiresolution decomposition and local time-frequency analysis of the wavelet transform, the image edge detection by wavelet transform is studied. Two methods are dealt with, which are the channel exclusive-OR operation and the high frequency energy-conserving edge detection. In accordance with the contradictory between antinoise ability and detection accuracy, the mutual-energy cross technique for noise suppression is proposed. By computer simulation, the experimental results are obtained on a test image and Lena image. The noise supressing ability is improved and the signal-noise ratio is increased by more than 3dB.
文摘A new rnultiscale edge detection method is presented, which is based on an effective edge measure. The effective edge measure, used to adaptively adjust the scales of wavelet transform, is defined using the novel features of image edge obtained from human being vision characteristics. Finally, two experiments show that the proposed algorithm appears to work well.
文摘The purpose of this work is to analyze the feasibility of using the wavelet transform in the edge detection of digital terrain models (DTM) obtained by Laser Scanner. The Haar wavelet transform and the edge detection method called Wavelet Transform Modulus Maxima (WTMM), both implemented in Matlab language, were used. In order to validate and verify the efficiency of WTMM, the edge detection of the same DTM was performed by the Roberts, Sobel-Feldman and Canny methods, chosen due to the wide use in the scientific community in the area of Image Processing and Remote Sensing. The comparison of the results showed superior performance of WTMM in terms of processing time.
基金This work was supported by the natural science foundation of Henan province(004061000)
文摘Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to the peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.
文摘For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)+2 种基金the Open Project Foundation of Key Lab of Port,Waterway and Sedimentation Engineering of the Ministry of Transportthe State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.
基金supported by the National Natural Science Foundation of China(6067309760702062)+3 种基金the National HighTechnology Research and Development Program of China(863 Program)(2008AA01Z1252007AA12Z136)the National ResearchFoundation for the Doctoral Program of Higher Education of China(20060701007)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT 0645).
文摘To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).
基金Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 49971055
文摘This paper puts forward an effective, specific algorithm for edge detection. Based on multi-structure elements of gray mathematics morphology, in the light of difference between noise and edge shape of RS images, the paper establishes multi-structure elements to detect edge by utilizing the grey form transformation principle. Compared with some classical edge detection operators, such as Sobel Edge Detection Operator, LOG Edge Detection Operator, and Canny Edge Detection Operator, the experiment indicates that this new algorithm possesses very good edge detection ability, which can detect edges more effectively, but its noise-resisting ability is relatively low. Because of the bigger noise & remote sensing image, the authors probe into putting forward other edge detection method based on combination of wavelet directivity checkout technology and small-scale Mathematical Morphology finally. So, position at the edge can be accurately located, the noise can be inhibited to a certain extent and the effect of edge detection is obvious.
基金Supported by the National Natural Science Foundation of China(No.51205265)
文摘In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background,an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed.At first,a new Butterworth high pass filter(BHPF) with adaptive cutoff frequency is produced,because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively,and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency.And then,the best decomposition scale is obtained by the level determination function to prevent edge information from missing.At last,edge points are got by double threshold after obtaining the wavelet modulus maxima,and then the edge image is linked by the edge points to ensure the edge continuity and veracity.Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm,and the edge detection algorithm can also detect other defects,and lays the foundation for defecting auto- recognition.
基金supported in part by the Science and Technology Development Fund,Macao SAR FDCT/085/2018/A2the Guangdong Basic and Applied Basic Research Foundation(2019A1515111185)。
文摘This paper presents a robust filter called the quaternion Hardy filter(QHF)for color image edge detection.The QHF can be capable of color edge feature enhancement and noise resistance.QHF can be used flexibly by selecting suitable parameters to handle different levels of noise.In particular,the quaternion analytic signal,which is an effective tool in color image processing,can also be produced by quaternion Hardy filtering with specific parameters.Based on the QHF and the improved Di Zenzo gradient operator,a novel color edge detection algorithm is proposed;importantly,it can be efficiently implemented by using the fast discrete quaternion Fourier transform technique.From the experimental results,we conclude that the minimum PSNR improvement rate is 2.3%and the minimum SSIM improvement rate is 30.2%on the CSEE database.The experiments demonstrate that the proposed algorithm outperforms several widely used algorithms.
基金supported by the University of Tunis El Manar and National Engineering School of Tunis
文摘Many methods have been proposed to extract the most relevant areas of an image. This article explores the method of edge detection by the multiscale product (MP) of the wavelet transform. The wavelet used in this work is the first derivative of a bidimensional Gaussian function. InitiaRy, we construct the wavelet, then we present the MP approach which is applied to binary and grey levels images. This method is compared with other methods without noise and in the presence of noise. The experiment results show fhht the MP method for edge detection outPerforms conventional methods even in noisy environments.
基金Beijing Higher Education and Teaching Project(No.2014-ms148)
文摘In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike moment algorithm is proposed.Non-orthogonal quadratic B-spline wavelet transform algorithm is adopted to get the pixel edge of miniature parts?andthe moment invariant of Zernike moment algorithm is used for refining the pixel edge to get sub-pixel edges.A real-time detectionsystem based on the proposed algorithm for miniature parts is established.The general system structure and operational principle are given,the real-time image acquisition and detection are completed,the results of edge detection are analyzed and the detection precision is evaluated.The results show that parts size can be0.01-10mm and the detection precision reaches0.01%-0.1%.Therefore,the edge of the miniature parts can be accurately identified and the detection precision can be improved to sub-pixel level,which meets the requirements of miniature parts precision detection.