In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates w...In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.展开更多
A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped ...A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped boundary conditions was the same as that adopted by Timoshenko and Goodier (1970). The analytical solution for the first type of clamped boundary condition is identical with that obtained by Luo et al.(2004), and the solutions for both types were compared with the FEM results and the calculations of thin plate theory.展开更多
In this paper, we consider a bending laminated plate. At first, the dimensionless variables are used to transform the equilibrium equations of any layer to perturbation differential equations. Secondly, the composite ...In this paper, we consider a bending laminated plate. At first, the dimensionless variables are used to transform the equilibrium equations of any layer to perturbation differential equations. Secondly, the composite expansion is used and the solution domain is divided into interior and boundary layer regions and the mathematical models for the outer solution and the inner solution are yielded respectively. Then, the inner solution is expressed with the boundary intergral equation.展开更多
In this paper, the bending problem of rectangular thin plates with free edges laid on tensionless Winkler foundation has been solved by employing Fourier series with supplementary terms. By assuming proper form of ser...In this paper, the bending problem of rectangular thin plates with free edges laid on tensionless Winkler foundation has been solved by employing Fourier series with supplementary terms. By assuming proper form of series for deflection, the basic differential equation with given boundary conditions can be transformed into a set of infinite algebraic equations. Because the boundary of contact region cannot bedetermined in advance, these equations are weak nonlinear ones. They can be solved by using iterative procedures.展开更多
This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is...This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular platen elaslically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourter series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given.Inherent frequencies and mode shape with any accutacy can be gained.展开更多
In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundam...In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundamental frequency of such plates is evaluated. A kind of polynomial satisfying the displacement boundary conditions is designed, os that it is enabled to evaluate the upper limit of fundamental frequency by Ritz' method. The practical calculation examples solved by these methods have given satisfactory results. At the end of this paper, it is pointed out that the socalled exact solution of such plates usually evaluated by the force superposition method is essentially a kind of lower limit of solution, if the truncated error of series which occurs in actual calculation is considered.展开更多
The exact solution of the bending of a thick rectangular plate with three clamped edges and one free edge under a uniform transverse load is obtained by means of the concept of generalized simply-supported boundary[1]...The exact solution of the bending of a thick rectangular plate with three clamped edges and one free edge under a uniform transverse load is obtained by means of the concept of generalized simply-supported boundary[1] in Reissner's theory of thick plates. The effect of the thickness h of a plate on the bending is studied and the applicable range of Kirchhoffs theory for bending of thin plates is considered.展开更多
On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed usin...On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.展开更多
The method of double Fourier transform Was employed in the analysis of the semi-infinite elastic foundation with vertical load. And an integral representations for the displacements of the semi-infinite elastic founda...The method of double Fourier transform Was employed in the analysis of the semi-infinite elastic foundation with vertical load. And an integral representations for the displacements of the semi-infinite elastic foundation was presented. The analytical solution of steady vibration of an elastic rectangle plate with four free edges on the semi-infinite elastic foundation was also given by combining the analytical solution of the elastic rectangle plate with the integral representation for displacements of the semiinfinite elastic foundation. Some computational results and the analysis on the influence of parameters were presented.展开更多
文摘In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.
文摘A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped boundary conditions was the same as that adopted by Timoshenko and Goodier (1970). The analytical solution for the first type of clamped boundary condition is identical with that obtained by Luo et al.(2004), and the solutions for both types were compared with the FEM results and the calculations of thin plate theory.
基金Project Supported by the National Science Foundation of China
文摘In this paper, we consider a bending laminated plate. At first, the dimensionless variables are used to transform the equilibrium equations of any layer to perturbation differential equations. Secondly, the composite expansion is used and the solution domain is divided into interior and boundary layer regions and the mathematical models for the outer solution and the inner solution are yielded respectively. Then, the inner solution is expressed with the boundary intergral equation.
文摘In this paper, the bending problem of rectangular thin plates with free edges laid on tensionless Winkler foundation has been solved by employing Fourier series with supplementary terms. By assuming proper form of series for deflection, the basic differential equation with given boundary conditions can be transformed into a set of infinite algebraic equations. Because the boundary of contact region cannot bedetermined in advance, these equations are weak nonlinear ones. They can be solved by using iterative procedures.
文摘This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular platen elaslically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourter series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given.Inherent frequencies and mode shape with any accutacy can be gained.
文摘In this paper, the method of relaxed boundary conditions is applied to rectangular plates with edges which are a sort of the mixture of simply supported portions and clamped portions, so that the lower limit of fundamental frequency of such plates is evaluated. A kind of polynomial satisfying the displacement boundary conditions is designed, os that it is enabled to evaluate the upper limit of fundamental frequency by Ritz' method. The practical calculation examples solved by these methods have given satisfactory results. At the end of this paper, it is pointed out that the socalled exact solution of such plates usually evaluated by the force superposition method is essentially a kind of lower limit of solution, if the truncated error of series which occurs in actual calculation is considered.
文摘The exact solution of the bending of a thick rectangular plate with three clamped edges and one free edge under a uniform transverse load is obtained by means of the concept of generalized simply-supported boundary[1] in Reissner's theory of thick plates. The effect of the thickness h of a plate on the bending is studied and the applicable range of Kirchhoffs theory for bending of thin plates is considered.
基金The National Natural Science Foundation of China under contract Nos 51490675,51322903 and 51279224
文摘On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.
基金Project supported by the Natural Science Foundation of Shaanxi Province(No.2006D23)
文摘The method of double Fourier transform Was employed in the analysis of the semi-infinite elastic foundation with vertical load. And an integral representations for the displacements of the semi-infinite elastic foundation was presented. The analytical solution of steady vibration of an elastic rectangle plate with four free edges on the semi-infinite elastic foundation was also given by combining the analytical solution of the elastic rectangle plate with the integral representation for displacements of the semiinfinite elastic foundation. Some computational results and the analysis on the influence of parameters were presented.