针对目前主流的线条提取算法对于区域对比度不明显的边缘的检测能力较弱,且对于所有区域采用无差别、统一化的处理策略,所生成的线条画往往较复杂,非常不利于机器人机械臂绘图的问题,本文提出了一种基于语义分割的简洁线条肖像画生成方...针对目前主流的线条提取算法对于区域对比度不明显的边缘的检测能力较弱,且对于所有区域采用无差别、统一化的处理策略,所生成的线条画往往较复杂,非常不利于机器人机械臂绘图的问题,本文提出了一种基于语义分割的简洁线条肖像画生成方法(concise line portrait generation based on semantic segmentation,CLPG-SS)。首先,对人脸图像进行语义分割,将人脸划分为不同的区域,基于不同区域提取边缘轮廓与五官细节线条,进行边缘切向流优化,从而加强方向信息;在此基础上,利用线条图来生成调和图像,并利用优化后的边缘切向流、人脸语义分割结果以及调和图像,针对不同的分割区域调整线条提取方法的参数,实现对细节无关区域的线条过滤和细节重点区域的线条加强,生成简洁线条肖像画。实验结果表明:本文提出的CLPG-SS方法能够有效提取人脸主轮廓线条,并针对不同区域实现了对细节线条的针对性调节,提高了机器人机械臂的绘制效率。展开更多
文摘针对目前主流的线条提取算法对于区域对比度不明显的边缘的检测能力较弱,且对于所有区域采用无差别、统一化的处理策略,所生成的线条画往往较复杂,非常不利于机器人机械臂绘图的问题,本文提出了一种基于语义分割的简洁线条肖像画生成方法(concise line portrait generation based on semantic segmentation,CLPG-SS)。首先,对人脸图像进行语义分割,将人脸划分为不同的区域,基于不同区域提取边缘轮廓与五官细节线条,进行边缘切向流优化,从而加强方向信息;在此基础上,利用线条图来生成调和图像,并利用优化后的边缘切向流、人脸语义分割结果以及调和图像,针对不同的分割区域调整线条提取方法的参数,实现对细节无关区域的线条过滤和细节重点区域的线条加强,生成简洁线条肖像画。实验结果表明:本文提出的CLPG-SS方法能够有效提取人脸主轮廓线条,并针对不同区域实现了对细节线条的针对性调节,提高了机器人机械臂的绘制效率。