期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research and Application of Log Defect Detection and Visualization System Based on Dry Coupling Ultrasonic Method
1
作者 Yongning Yuan Dong Zhang +4 位作者 Usama Sayed Hao Zhu Jun Wang Xiaojun Yang Zheng Wang 《Journal of Renewable Materials》 EI 2023年第11期3917-3932,共16页
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system... In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments. 展开更多
关键词 Ultrasonic method log defect detection visualization system dry coupling B-scan pulse transmission method bilinear image interpolation algorithm edge detection algorithm
下载PDF
Identification of thermal front dynamics in the northern Malacca Strait using ROMS 3D-model
2
作者 Ku Nor Afiza Asnida Ku MANSOR Nur Hidayah ROSELI +2 位作者 Poh Heng KOK Fariz Syafiq Mohamad ALI Mohd Fadzil Mohd AKHIR 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期41-57,共17页
The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter ... The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter the characteristics of this important feature.Using the simulation results of the 3D Regional Ocean Modelling System(ROMS),we identified the location of thermal fronts and determined their dynamic variability in the area between the southern Andaman Sea and northern Malacca Strait.The Single Image Edge Detection(SIED)algorithm was used to detect the thermal front from model-derived temperature.Results show that a thermal front occurred every year from 2002 to 2012 with the temperature gradient at the location of the front was 0.3°C/km.Compared to the years affected by El Ni?o and negative Indian Ocean Dipole(IOD),the normal years(e.g.,May 2003)show the presence of the thermal front at every selected depth(10,25,50,and 75 m),whereas El Ni?o and negative IOD during 2010 show the presence of the thermal front only at depth of 75 m due to greater warming,leading to the thermocline deepening and enhanced stratification.During May 2003,the thermal front was separated by cooler SST in the southern Andaman Sea and warmer SST in the northern Malacca Strait.The higher SST in the northern Malacca Strait was believed due to the besieged Malacca Strait,which trapped the heat and make it difficult to release while higher chlorophyll a in Malacca Strait is due to the freshwater conduit from nearby rivers(Klang,Langat,Perak,and Selangor).Furthermore,compared to the southern Andaman Sea,the chlorophyll a in the northern Malacca Strait is easier to reach the surface area due to the shallower thermocline,which allows nutrients in the area to reach the surface faster. 展开更多
关键词 regional ocean modelling system thermal front Andaman Sea Malacca Strait single image edge detection algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部