In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ...In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.展开更多
The Silurian Kepingtage Formation in Tazhong area is regarded as an acid-sensitive hydrocarbon reservoir. However, formation mechanism of acid-sensitive of the reservoir cannot be interpreted by the existing acid-sens...The Silurian Kepingtage Formation in Tazhong area is regarded as an acid-sensitive hydrocarbon reservoir. However, formation mechanism of acid-sensitive of the reservoir cannot be interpreted by the existing acid-sensitive evaluation criterion based on damage rate. The contents of acid-sensitive minerals illustrated by bulk-rock XRD, scanning electron microscopy and clay mineral composition analysis exert the dominant control on acid-sensitive flow testing of the reservoir. The ironbearing minerals(including pyrite cements and chlorite cements) mainly deteriorate reservoir quality, while the iron-free minerals(including calcite cements and dolomite cements) mainly improve permeability. The permeability variation of the tested samples is controlled by the relative content of two acid-sensitive minerals. On the basis of newly established sensitivity mechanism and its influence on permeability, the corresponding ion(Fe^(2+)) stabilizer was added to the acidizing fluids during the acidification reconstruction, which inhibited the negative factors of acid-sensitive minerals and improved the target layer quality effectively.展开更多
基金Projects(51278462,51378469)supported by the National Natural Science Foundation of ChinaProject(2011B81005)supported by Ningbo Science and Technology Innovation Team,ChinaProject(2013A610202)supported by Ningbo Natural Science Foundation of China
文摘In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.
基金supported by the National Science and Technology Major Project of China(Grant No.2017ZX05008003-050)the PetroChina Innovation Foundation(Grant No.2016D-5007-0104)+1 种基金the Yangtze Youth Talents Fund(Grant No.2015cqr08)the Yangtze Fund for Youth Teams of Science and Technology Innovation(Grant No.2015cqt04)
文摘The Silurian Kepingtage Formation in Tazhong area is regarded as an acid-sensitive hydrocarbon reservoir. However, formation mechanism of acid-sensitive of the reservoir cannot be interpreted by the existing acid-sensitive evaluation criterion based on damage rate. The contents of acid-sensitive minerals illustrated by bulk-rock XRD, scanning electron microscopy and clay mineral composition analysis exert the dominant control on acid-sensitive flow testing of the reservoir. The ironbearing minerals(including pyrite cements and chlorite cements) mainly deteriorate reservoir quality, while the iron-free minerals(including calcite cements and dolomite cements) mainly improve permeability. The permeability variation of the tested samples is controlled by the relative content of two acid-sensitive minerals. On the basis of newly established sensitivity mechanism and its influence on permeability, the corresponding ion(Fe^(2+)) stabilizer was added to the acidizing fluids during the acidification reconstruction, which inhibited the negative factors of acid-sensitive minerals and improved the target layer quality effectively.