Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-...Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.展开更多
Panicle length and effective panicle number of rice are closely related to yield. In this experiment, indica V20B as female parent was crossed with javanica CPSLO17 as male parent, recombinant inbred line (RIL) popu...Panicle length and effective panicle number of rice are closely related to yield. In this experiment, indica V20B as female parent was crossed with javanica CPSLO17 as male parent, recombinant inbred line (RIL) populations were obtained by single seed descent method, and with the RIL populations as mapping populations, QTL mapping and analysis were performed to the two panicle traits, panicle length and effective panicle. A high-density genetic map was constructed with SLAF labels, interval mapping was performed by software Map QTL5 under the threshold of 3.9, and 7 QTLs were detected on 3 chromosomes in total. Among the 7 QTLs, 5 QTLs controlling panicle length (qPLI-1, qPL1-2, qPL6-1, qPI_6-2 and qPL6-3) were located on chromosomes 1 and 6, respectively, and showed the contribution rates of 6.41%, 22.22%, 6.15%, 12.24% and 13.01%, respectively, their effect-increasing loci were mainly from CPSLO17, and qPL1-1 is a new QTL; and 2 QTLs controlling effective panicle number (qPN1 and qPN4) were located on chromosomes 1 and 4, respectively, and exhibited the contribution rates of 13.15% and 8.18%, respectively, and the effect-increasing loci were from parent V2OB. The marking of these loci lays a foundation for further cloning of genes controlling panicle length and effective panicle number and molecular marker-assisted selection.展开更多
Unconditional and conditional QTL mapping were conducted for growth duration (GD), plant height (PH) and effective panicle number per plant (PN) using a recombinant inbred line (RIL) population derived from a cross be...Unconditional and conditional QTL mapping were conducted for growth duration (GD), plant height (PH) and effective panicle number per plant (PN) using a recombinant inbred line (RIL) population derived from a cross between two japonica rice varieties Xiushui 79 and C Bao. The RIL population consisted of 254 lines was planted in two environments, Nanjing and Sihong, Jiangsu Province, China. Results showed that additive effects were major in all of QTLs for GD, PH and PN detected by the two methods, and the epistatic effects explained a small proportion of phenotypic variation. No interactions were detected between additive QTL and environment, and between epistatic QTL pairs and environment. After growth duration was adjusted to an identical level, RM80-160bp was detected as an applicable elite allele for PN, with an additive effect of 0.71. When effective panicle number per plant was adjusted to an identical level, RM448-240bp was detected as an applicable elite allele for GD, with an additive effect of 4.64. After plant height was adjusted to an identical level, RM80-160bp was detected as an applicable elite allele for PN, with an additive effect of 0.62, and RM448-240bp was detected as an applicable elite allele for GD, with an additive effect of 3.89. These applicable elite alleles could be used to improve target traits without influencing the other two traits.展开更多
[Objective] The objective of this paper was to screen out suitable high- yielding cultivars and to understand the current yield performance of wheat in Anhui Province. In addition, the influencing factors on wheat yie...[Objective] The objective of this paper was to screen out suitable high- yielding cultivars and to understand the current yield performance of wheat in Anhui Province. In addition, the influencing factors on wheat yield were discussed to es- tablish suitable cultural practice. [Method] Main popularized cultivars and some new strains of wheat were selected as matedals and planted in the Funan Farm and Longkang Farm in 2009-2011. The yield stability and influencing factors on yield of wheat were discussed. [Resalt] In Anhui Province, the weather had a great influence on wheat yield, resulting in significant differences in wheat yield among different years. Drought was the main factor restricting the yield. [Conclusion] (1) It was easy to achieve high yield when the three influencing factors on wheat yield were coordi- nated. (2) The occurred drought disaster in 20tl was the main factor limiting the 1 000- grain weight and final yield of wheat. (3) Different cultivars showed different yield stabilities. Among the test wheat cultivars, two cultivars (Wanke 06290 and Yannong 19) showed good yield stability, while Xinfumai No.1 showed higher yield. (4) The three influencing factors played different roles in different cultivars. In the promotion process, the characteristics of wheat cultivars should be fully understood. To achieve high yield, integrating cultural practices is a necessity.展开更多
基金This work was funded by the National Key Research and Development Program of China(2023YFF1000404)the Shenzhen Basic Research and Development Key Program of China(JCYJ20200109150713553)Hainan Key Research and Development in Modern Agriculture of China(ZDYF2021Y128).
文摘Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.
基金Supported by Science and Technology Project of Guizhou Province(G20124010)Science and Technology Project of Guizhou Province(20155003-3)+1 种基金Service Action Plan of Scientific Research Institutions in Guizhou Province(LH20144005)Construction Project of Modern Agricultural Industry System in Guizhou Province(GZCYTX2015-06)
文摘Panicle length and effective panicle number of rice are closely related to yield. In this experiment, indica V20B as female parent was crossed with javanica CPSLO17 as male parent, recombinant inbred line (RIL) populations were obtained by single seed descent method, and with the RIL populations as mapping populations, QTL mapping and analysis were performed to the two panicle traits, panicle length and effective panicle. A high-density genetic map was constructed with SLAF labels, interval mapping was performed by software Map QTL5 under the threshold of 3.9, and 7 QTLs were detected on 3 chromosomes in total. Among the 7 QTLs, 5 QTLs controlling panicle length (qPLI-1, qPL1-2, qPL6-1, qPI_6-2 and qPL6-3) were located on chromosomes 1 and 6, respectively, and showed the contribution rates of 6.41%, 22.22%, 6.15%, 12.24% and 13.01%, respectively, their effect-increasing loci were mainly from CPSLO17, and qPL1-1 is a new QTL; and 2 QTLs controlling effective panicle number (qPN1 and qPN4) were located on chromosomes 1 and 4, respectively, and exhibited the contribution rates of 13.15% and 8.18%, respectively, and the effect-increasing loci were from parent V2OB. The marking of these loci lays a foundation for further cloning of genes controlling panicle length and effective panicle number and molecular marker-assisted selection.
基金supported by the Program of National High Technology Research and Development, Ministry of Science and Technology, China (Grant No. 2010AA101301)the Program of Introducing Talents of Discipline to University in China (Grant No. B08025)+1 种基金the Program of Introducing International Advanced Agricultural Science and Technology in China (Grant No. 2006-G8 [4]-31-1) the Program of Science-Technology Basis and Conditional Platform in China (Grant No. 505005)
文摘Unconditional and conditional QTL mapping were conducted for growth duration (GD), plant height (PH) and effective panicle number per plant (PN) using a recombinant inbred line (RIL) population derived from a cross between two japonica rice varieties Xiushui 79 and C Bao. The RIL population consisted of 254 lines was planted in two environments, Nanjing and Sihong, Jiangsu Province, China. Results showed that additive effects were major in all of QTLs for GD, PH and PN detected by the two methods, and the epistatic effects explained a small proportion of phenotypic variation. No interactions were detected between additive QTL and environment, and between epistatic QTL pairs and environment. After growth duration was adjusted to an identical level, RM80-160bp was detected as an applicable elite allele for PN, with an additive effect of 0.71. When effective panicle number per plant was adjusted to an identical level, RM448-240bp was detected as an applicable elite allele for GD, with an additive effect of 4.64. After plant height was adjusted to an identical level, RM80-160bp was detected as an applicable elite allele for PN, with an additive effect of 0.62, and RM448-240bp was detected as an applicable elite allele for GD, with an additive effect of 3.89. These applicable elite alleles could be used to improve target traits without influencing the other two traits.
基金Supported by Anhui Provincial Wheat Industrial Technology System R&D Center~~
文摘[Objective] The objective of this paper was to screen out suitable high- yielding cultivars and to understand the current yield performance of wheat in Anhui Province. In addition, the influencing factors on wheat yield were discussed to es- tablish suitable cultural practice. [Method] Main popularized cultivars and some new strains of wheat were selected as matedals and planted in the Funan Farm and Longkang Farm in 2009-2011. The yield stability and influencing factors on yield of wheat were discussed. [Resalt] In Anhui Province, the weather had a great influence on wheat yield, resulting in significant differences in wheat yield among different years. Drought was the main factor restricting the yield. [Conclusion] (1) It was easy to achieve high yield when the three influencing factors on wheat yield were coordi- nated. (2) The occurred drought disaster in 20tl was the main factor limiting the 1 000- grain weight and final yield of wheat. (3) Different cultivars showed different yield stabilities. Among the test wheat cultivars, two cultivars (Wanke 06290 and Yannong 19) showed good yield stability, while Xinfumai No.1 showed higher yield. (4) The three influencing factors played different roles in different cultivars. In the promotion process, the characteristics of wheat cultivars should be fully understood. To achieve high yield, integrating cultural practices is a necessity.