期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Impact of effective stress on permeability for carbonate fractured-vuggy rocks
1
作者 Ke Sun Huiqing Liu +5 位作者 Juliana Y.Leung Jing Wang Yabin Feng Renjie Liu Zhijiang Kang Yun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期942-960,共19页
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef... To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs. 展开更多
关键词 effective stress PERMEABILITY Carbonate fractured-vuggy rocks Structure characteristics stress sensitivity
下载PDF
Experimental and theoretical study on the dynamic effective stress of loaded gassy coal during gas release 被引量:2
2
作者 Bing Zhang Hanpeng Wang +2 位作者 Peng Wang Guofeng Yu Shitan Gu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期339-349,共11页
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s... In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%. 展开更多
关键词 Gassy coal Dynamic effective stress Gas release Gas-solid coupling Mathematical model
下载PDF
Effects of effective stress and temperature on permeability of sandstone from CO2-plume geothermal reservoir 被引量:5
3
作者 Y.Z.Sun L.Z.Xie +2 位作者 B.He C.Gao J.Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期819-827,共9页
Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introdu... Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature. 展开更多
关键词 Sandstone from CO2-plume geothermal (CPG) reservoir Temperature and effective stress Flow channel Two parts permeabilities
下载PDF
THEORETICAL MODEL OF EFFECTIVE STRESS COEFFICIENT FOR ROCK/SOIL-LIKE POROUS MATERIALS 被引量:5
4
作者 Kai Zhang Hui Zhou Dawei Hu Yang Zhao Xiating Feng 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期251-260,共10页
Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivi... Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research. 展开更多
关键词 rock/soil-like porous materials generalized model for effective stress coefficient tensor equivalent connectivity index of pore genetic algorithm
下载PDF
EFFECTIVE STRESS LAWS FOR MULTI_POROSITY MEDIA 被引量:2
5
作者 陈勉 陈至达 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第11期1207-1213,共7页
In this paper, the effective stress for multi-porosity elasticity model is presented by means of stress analysis for double porosity media elements. It is found that the effective stress law is not unique, it depends ... In this paper, the effective stress for multi-porosity elasticity model is presented by means of stress analysis for double porosity media elements. It is found that the effective stress law is not unique, it depends on the hypothesis of constitutive equations for multi-porosity media. Diversified effective stress laws for multi-porosity are developed. 展开更多
关键词 multi-porosity media POROSITY FRACTURE effective stress
下载PDF
Examination of effective stress in clay rock 被引量:1
6
作者 Chun-Liang Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期97-107,共11页
This paper examines the effective stress in indurated clay rock theoretically and experimentally.A stress concept is derived from the analysis of the microstructure and of the pore water in the highly-indurated Callov... This paper examines the effective stress in indurated clay rock theoretically and experimentally.A stress concept is derived from the analysis of the microstructure and of the pore water in the highly-indurated Callovo-Oxfordian and Opalinus clay rocks,and subsequently validated by various experiments performed on these claystones.The concept suggests that the interparticle or effective stress in a dense clay ewater system is transferred through both the adsorbed interparticle pore water in narrow pores and the solidesolid contact between non-clay mineral grains.The experiments show that the adsorbed pore water in the claystones is capable of bearing deviatoric effective stresses up to the failure strength.The applied stresses are for the most part or even totally transferred by the bound pore water,i.e.the swelling pressure in the interparticle bound pore water is almost equivalent to the effective stress.This stress concept provides a reasonable view to the nature of the effective stress in argillaceous rock and forms the fundamental basis for studies of the hydro-mechanical properties and processes in clay formations. 展开更多
关键词 Clay rock stress analysis effective stress Swelling pressure EXPERIMENT
下载PDF
EFFECTIVE STRESS AND STRAIN IN FINITE DEFORMATION
7
作者 周喆 秦伶俐 +1 位作者 黄文彬 王红卫 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第5期595-604,共10页
Whether the concept of effective stress and strain in elastic-plastic theory is still valid under the condition of finite deformation was mainly discussed. The uni-axial compression experiments in plane stress and pla... Whether the concept of effective stress and strain in elastic-plastic theory is still valid under the condition of finite deformation was mainly discussed. The uni-axial compression experiments in plane stress and plane strain states were chosen for study. In the two kinds of stress states, the stress-strain curve described by logarithm strain and rotated Kirchhoff stress matches the experiments data better than the curves defined by other stress-strain description. 展开更多
关键词 finite deformation plastic constitutive effective stress effective strain volume invariability
下载PDF
Effective stress law for anisotropic double porous media 被引量:3
8
作者 ZHAO Ying CHEN Mian ZHANG Guangqing 《Chinese Science Bulletin》 SCIE CAS 2004年第21期2327-2331,共5页
An effective stress law is derived analytically to describe the effect of pore (fracture pore and matrix-block pore) fluid pressure on the linearly elastic response of ani- sotropic saturated dual-porous rocks, which ... An effective stress law is derived analytically to describe the effect of pore (fracture pore and matrix-block pore) fluid pressure on the linearly elastic response of ani- sotropic saturated dual-porous rocks, which exhibit anisot- ropy. For general anisotropy the difference between the ef- fective stress and the applied stress is not hydrostatic simply multiplied by Biot coefficient. The effective stress law in- volves four constants for transversely isotropic response; these constants can be expressed in terms of the moduli of the single porous material, double porous material and of the solid material. These expressions are simplified considerably when the anisotropy is structural rather than intrinsic, i.e. in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves grain bulk modulus, four moduli and two compliances of the porous material for transverse isotropy. The law reduces, in the case of isotropic response, to that suggested by Li Shuiquan (2001). And reduction to the single-porosity (de- rived analytically by Carroll (1979)) is presented to demon- strate the conceptual consistency of the proposed law. 展开更多
关键词 ANISOTROPY single porous media double porous media PORE FRACTURE effective stress
原文传递
Determination of effective stress parameter of unsaturated soils:A Gaussian process regression approach 被引量:1
9
作者 Pijush Samui Jagan J 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第2期133-136,共4页
This article examines the capability of Gaussian process regression(GPR)for prediction of effective stress parameter(χ)of unsaturated soil.GPR method proceeds by parameterising a covariance function,and then infers t... This article examines the capability of Gaussian process regression(GPR)for prediction of effective stress parameter(χ)of unsaturated soil.GPR method proceeds by parameterising a covariance function,and then infers the parameters given the data set.Input variables of GPR are net confining pressure(σ_(3)),saturated volumetric water content(θ_(s)),residual water content(θ_(r)),bubbling pressure(h_(b)),suction(s)and fitting parameter(l).A comparative study has been carried out between the developed GPR and Artificial Neural Network(ANN)models.A sensitivity analysis has been done to determine the effect of each input parameter onχ.The developed GPR gives the variance of predictedχ.The results show that the developed GPR is reliable model for prediction ofχof unsaturated soil. 展开更多
关键词 unsaturated soil effective stress parameter Gaussian process regression(GPR) artificial neural network(ANN) variance
原文传递
Effects of stress loading mode on microstructures and properties of Mg-9Gd-2Nd-0.5Zr alloy treated by creep aging
10
作者 Simin Shen Yongpeng Zhuang +6 位作者 Ming Li Hongxia Wang Lifei Wang Weili Cheng Hang Li Hua Hou Kwangseon Shin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4263-4273,共11页
Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stres... Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stress loading method affects creep aging of Mg alloys is still unclear. In this paper, the microstructural evolution of precipitated phases and precipitation-free zones(PFZ) at grain boundaries with different stress loading modes(unstressed, unidirectional tensile stress, and cyclic stress) at 250 ℃ were investigated along with changes in mechanical properties. The results showed that the addition of stress during aging effectively promoted the precipitation of precipitated phases, while unaffecting grain size. Unidirectional tensile stress caused directional growth of β phase([1010]), as well as rotation of weave towards the basal plane texture, resulting in namely stress orientation effect. Solute atoms diffused in the direction of tensile stress while vacancies moved perpendicular to the direction of tensile stress, resulting in PFZ at grain boundaries(157.06 nm). By contrast, cyclic stresses led to the growth of β phase in three directions([1010], [1100] and [0110]). The solute atoms and vacancies were uniformly distributed in the Mg matrix instead of directional diffusion, effectively reducing the width of PFZ(112.39 nm) at the grain boundary. These features significantly improved the mechanical properties of alloy specimens after cyclic stress creep aging when compared to unidirectional stress creep aging, with yield strength(YS), ultimate tensile strength(UTS), and elongation(EL) enhanced from 171.6 MPa, 305.5 MPa, and 4.4%to 174.8 MPa, 326.3 MPa, and 6.9%, respectively. 展开更多
关键词 Mg-9Gd-2Nd-0.5Zr alloy Precipitated phase stress orientation effect PFZ Mechanical properties
下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection 被引量:1
11
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 Underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
下载PDF
A hybrid machine learning optimization algorithm for multivariable pore pressure prediction
12
作者 Song Deng Hao-Yu Pan +8 位作者 Hai-Ge Wang Shou-Kun Xu Xiao-Peng Yan Chao-Wei Li Ming-Guo Peng Hao-Ping Peng Lin Shi Meng Cui Fei Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期535-550,共16页
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f... Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure. 展开更多
关键词 Pore pressure Grey wolf optimization Multilayer perceptron effective stress Machine learning
下载PDF
Confinement effect on CO_(2)and CH_(4)permeability in shale
13
作者 Vikram Vishal Tuli Bakshi 《Energy Geoscience》 EI 2024年第1期256-263,共8页
Gas flow in shales follows a number of physical mechanisms that include Knudsen diffusion,Darcy flow,and adsorption in the matrix and micro pores.The aim of the study is to resolve the interplay of gas transport in th... Gas flow in shales follows a number of physical mechanisms that include Knudsen diffusion,Darcy flow,and adsorption in the matrix and micro pores.The aim of the study is to resolve the interplay of gas transport in these media at increased effective stress as well as net pore pressure.In this research,we investigated the nature of gas transport in the matrix of shale by sending He,CH_(4)and CO_(2)gases through a transient upstream pressure pulse decay instrument.A series of experiments were conducted at constant pore pressures and a gradually increasing confining pressure.The same study was done in three different scenarios,injecting He,CO_(2)and CH_(4).At a constant pore pressure,gas permeability appears to decrease with an increasing confining pressure and effective stress.With increasing effective stress,the slip factor also decreases along with the permeability.The decrease in slip could be attributed to prestressing,that is likely to create new fractures.Among the three purged gases,permeability of shale to CH_(4)is the highest,and that to CO_(2)is the lowest owing to its high adsorption.Higher permeability of CH_(4)against He,could be attributed to the dual transport mechanism. 展开更多
关键词 ENERGY Porous media Gas transport effective stress
下载PDF
Numerical study on gas production via a horizontal well from hydrate reservoirs with different slope angles in the South China Sea
14
作者 Tingting Luo Jianlin Song +5 位作者 Xiang Sun Fanbao Cheng Madhusudhan Bangalore Narasimha Murthy Yulu Chen Yi Zhao Yongchen Song 《Deep Underground Science and Engineering》 2024年第2期171-181,共11页
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China... It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs. 展开更多
关键词 effective stress low‐permeability reservoirs natural gas hydrate production numerical simulation SETTLEMENT slope angle the South China
下载PDF
STRESS RELAXATION BEHAVIOUR OF TITANIUM
15
作者 XIA Yuebo WANG Zhongguang Institute of Metal Research,Academia Sinica,Shenyang,China Associate Professor,Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第5期311-314,共4页
Studies of stress relaxation were carried out on commercially pure titanium.It was found that the stress relaxation behaviour relates closely to the level of deformation.The amount of re- laxed stress (?)σ_R is indep... Studies of stress relaxation were carried out on commercially pure titanium.It was found that the stress relaxation behaviour relates closely to the level of deformation.The amount of re- laxed stress (?)σ_R is independent of the amplitude of stress dip in a certain range of deformation.However,it depend on the stress level at which stress relaxation begins in a cer- tain relaxation time t_R.Both back(critical)stress σ_c and flow stress σ_o vary with the strain in a similar manner.The effective stress on dislocations σ~* increases with increasing strain under low strains,but keeps constant under higher strains. 展开更多
关键词 stress relaxation critical stress effective stress relaxed stress
下载PDF
Stress Effect of Cadmium Absorption between Aloe and Solanum nigrum L 被引量:4
16
作者 Chen Yingzhi Fu Shanming +3 位作者 Wang Jianhuang Pei Jie Li Wenhao He Caizhen 《Meteorological and Environmental Research》 CAS 2015年第3期30-33,共4页
The stress effect of cadmium absorption between aloe and Solanum nigrum L was studied through a simulation experiment with different cadmium contents in soil. The results showed that the growth characteristics, biomas... The stress effect of cadmium absorption between aloe and Solanum nigrum L was studied through a simulation experiment with different cadmium contents in soil. The results showed that the growth characteristics, biomass and Cd content in the plants of aloe and S. nigrum L were closely related to Cd content in the soil, and S. nigrum L and aloe had a strong tolerance to Cd in the experiment, pH of rhizosphere soil with S. ni- grum L and aloe planted was generally higher than that of non-rhizosphere soil, which is related to the planting pattern. Compared with aloe, S. nig- rum L had a stronger capacity to accumulate Cd, and intercropping S. nigrum L and aloe could inhibit aloe's absorption of Cd, which is favorable to the safe planting of aloe. In addition, S. nigrum L has the potential to restore polluted soil. 展开更多
关键词 ALOE Solanum nigrum L CADMIUM stress effect China
下载PDF
Fixed-length roof cutting with vertical hydraulic fracture based on the stress shadow effect:A case study 被引量:4
17
作者 Feiteng Zhang Xiangyu Wang +3 位作者 Jianbiao Bai Wenda Wu Bowen Wu Guanghui Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期295-308,共14页
Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as resea... Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as research background,the roof breaking structure of PLRR is analyzed.It is concluded that the roof cutting with vertical hydraulic fracture(HF)at a specified position,that is,fixed-length roof cutting,can reduce support load and keep immediate roof intact.The extended finite element method(XFEM)is applied to simulate hydraulic fracturing.The results show that both the axial and transverse hydraulic fracturing cannot effectively create vertical HFs.Therefore,a novel construction method of vertical HF based on the stress shadow effect(SSE)is proposed.The stress reversal region and HF orientation caused by the prefabricated hydraulic fracture(PF)are verified in simulation.The sub-vertical HFs are obtained between two PFs,the vertical extension range of which is much larger than that of directional hydraulic fracturing.The new construction method was used to determine the field plan for fixed-length roof cutting.The roof formed a stable suspended structure and deformation of the main PLRR was improved after hydraulic fracturing. 展开更多
关键词 Roof cutting Hydraulic fracture stress shadow effect Retracement roadway Extended finite element method
下载PDF
Tunnel design considering stress release effect 被引量:3
18
作者 Van-hung DAO 《Water Science and Engineering》 EI CAS 2009年第3期87-95,共9页
In tunnel design, the determination of installation time and the stiffness of supporting structures is very important to the tunnel stability. This study used the convergence-confinement method to determine the stress... In tunnel design, the determination of installation time and the stiffness of supporting structures is very important to the tunnel stability. This study used the convergence-confinement method to determine the stress and displacement of the tunnel while considering the counter-pressure curve of the ground base, the stress release effect, and the interaction between the tunnel lining and the rock surrounding the tunnel chamber. The results allowed for the determination of the installation time, distribution and strength of supporting structures. This method was applied to the intake tunnel in the Ban Ve Hydroelectric Power Plant, in Nghe An Province, Vietnam. The results show that when a suitable displacement u0 ranging from 0.0865 m to 0.0919 m occurrs, we can install supporting structures that satisfy the stability and economical requirements. 展开更多
关键词 TUNNEL supporting structures STABILITY counter-pressure curve stress release effect
下载PDF
Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method 被引量:2
19
作者 M.MOHAMMADIMEHR M.A.MOHAMMADIMEHR P.DASHTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第4期529-554,共26页
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas... The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications. 展开更多
关键词 biaxial and shear nonlinear buckling analysis nonlocal isotropic and orthotropic micro-plate modified couple stress theory (MCST) surface stress effect differential quadrature method (DQM)
下载PDF
Oxidative Stress and Role of Natural Plant Derived Antioxidants in Animal Reproduction 被引量:6
20
作者 ZHONG Rong-zhen ZHOU Dao-wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第10期1826-1838,共13页
The experimental knowledge on the role of oxidative stress,and beneficial and detrimental effects of plant derived antioxidants in male and female animal reproduction are reviewed in this article.Free radical-induced ... The experimental knowledge on the role of oxidative stress,and beneficial and detrimental effects of plant derived antioxidants in male and female animal reproduction are reviewed in this article.Free radical-induced oxidative stress in animal reproduction causes great loss to livestock industry.Antioxidant therapy has been implicated to be effective in preventing diseases resulted from oxidative stress.Considering the advantages of lower side effects of natural antioxidants than those of synthetic antioxidants,plants or their extracts have been extensively utilized in animals.Although many advances have been gained on application of plant derived antioxidants in alleviating oxidative stress,debatable issues still exist.Because many opposite effects were observed even using plant extracts containing similar bioactive substances in the same animal species.Therefore,plant derived antioxidants,like free radicals,are "double-edged swords" in animal reproduction,representing that they may exhibit beneficial or detrimental effects in animal reproduction,including spermatogenesis,semen functions,estrous cycles,ovulation,ovary functions,endometrium,embryo development,and pregnancy.Besides dose-dependent manner as an explanation of plant extracts' dual function,future studies are needed to investigate the mechanism of double-edged actions of plant derived antioxidants in different animal reproduction systems. 展开更多
关键词 oxidative stress plant extract antioxidant double-edged effect animal reproduction
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部