BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ...BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.展开更多
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob...Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs...In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs change over time is unclear in riparian forests.In this study,leaf litter of three common species(Alnus sibirica Fisch.ex Turcz,Betula platyphylla Sukaczev,and Betula fruticosa Pall.)were mixed in an equal mass ratio and LMEs were measured for mass and nitrogen(N)remaining in whole litter mixtures over a 3-year period in a boreal riparian forest,northeastern China.LMEs were also assessed for component litter mass and N remaining by separating litter mixtures by species.During the decay of litter mixtures,antagonistic effects on mass and N remaining were dominant after one and two years of decay,whereas only additive effects were observed after three years.LMEs correlated negatively with functional diversity after the first and two years of decay but disappeared after three years.When sorting litter mixtures by species,non-additive LMEs on mass and N remaining decreased over incubation time.Moreover,non-additive LMEs were more frequent for litter of both B.platyphylla and B.fruticosa with lower N concentration than for A.sibirica litter with higher N concentration.These results indicate that incubation time is a key determinant of litter mixing effects during decay and highlight that late-stage litter mixture decay may be predicted from single litter decay dynamics in boreal riparian forests.展开更多
Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban...Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.展开更多
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical...Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.展开更多
Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the pr...Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the preparation of carbon nanotube(CNT)and the hydrogenation of 4,6-dinitroresorcinol(DNR)using Fe_(2)O_(3)and Pt catalysts,respectively.Various Fe_(2)O_(3)/Al_(2)O_(3)catalysts were synthesized for CNT growth through catalytic chemical vapor deposition.Our findings reveal a significant influence of Fe_(2)O_(3)nanoparticle size on the structure and yield of CNT.Specifically,CNT produced with Fe_(2)O_(3)/Al_(2)O_(3)containing 28%(mass)Fe loading exhibits abundant surface defects,an increased area for metal-particle immobilization,and a high carbon yield.This makes it a promising candidate for DNR hydrogenation.Utilizing this catalyst support,we further investigate the size effects of Pt nanoparticles on DNR hydrogenation.Larger Pt catalysts demonstrate a preference for 4,6-diaminoresorcinol generation at(100)sites,whereas smaller Pt catalysts are more susceptible to electronic properties.The kinetics insights obtained from this study have the potential to pave the way for the development of more efficient catalysts for both CNT synthesis and DNR hydrogenation.展开更多
This review compiles information from the literature on the chemical composition,pharmacological effects,and molecular mechanisms of earthworm extract(EE)and suggests possibilities for clinical translation of EE.We al...This review compiles information from the literature on the chemical composition,pharmacological effects,and molecular mechanisms of earthworm extract(EE)and suggests possibilities for clinical translation of EE.We also consider future trends and concerns in this domain.We summarize the bioactive components of EE,including G-90,lysenin,lumbrokinase,antimicrobial peptides,earthworm serine protease(ESP),and polyphenols,and detail the antitumor,antithrombotic,antiviral,antibacterial,anti-i nflammatory,analgesic,antioxidant,wound-healing,antifibrotic,and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies.We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies,and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance.The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis.Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix.The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage.Earthworms have evolved a well-developed defense mechanism to fight against microbial infections,and the bioactive agents in EE have shown good antibacterial,fungal,and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections,effectively reducing pain.Recent studies have also highlighted the role of EE in lowering blood glucose.EE shows high medicinal value and is expected to be a source of many bioactive compounds.展开更多
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien...The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.展开更多
Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur...Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.展开更多
Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the hi...Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the high-resolution online trajectory detection for the Hi’Beam-SEE system,which aims to localize SEE-sensitive positions on the IC at the micrometer scale and in real time.We employed a reparameterization method to accelerate the inference speed,merging the branches of the backbone of the location in the deployment scenario.Additionally,we designed an irregular convolution kernel,an attention mechanism,and a fused loss function to improve the positioning accuracy.OML demonstrates exceptional realtime processing capabilities,achieving a positioning accuracy of 1.83μm in processing data generated by the Hi’Beam-SEE system at 163 frames per second per GPU.展开更多
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic...Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.展开更多
Climate change is the most significant threat to public health and exerts myriad influences on health,including the occurrence of extreme temperature events.Studies have demonstrated that populations will experience s...Climate change is the most significant threat to public health and exerts myriad influences on health,including the occurrence of extreme temperature events.Studies have demonstrated that populations will experience significantly severe cold waves in the future^([1]),increasing the risk of respiratory diseases.展开更多
Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ...Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.展开更多
Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and freque...Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.展开更多
Hexagonal MnMX-based(M=Co or Ni,X=Si or Ge)alloys exhibit giant reversible barocaloric effects.However,giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders,and inevitably bring the d...Hexagonal MnMX-based(M=Co or Ni,X=Si or Ge)alloys exhibit giant reversible barocaloric effects.However,giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders,and inevitably bring the deterioration of mechanical properties and formability.Grain fragmentation can bring degradation of structural transformation entropy change during cyclic application and removal of pressure.In this paper,giant reversible barocaloric effects with high thermal cycle stability can be achieved in the epoxy bonded(MnCoGe)0.96(CuCoSn)0.04 composite.Giant reversible isothermal entropy change of 43.0 J·kg^(−1)·K^(−1) and adiabatic temperature change from barocaloric effects(ΔT_(BCE))of 15.6 K can be obtained within a wide temperature span of 30 K at 360 MPa,which is mainly attributed to the integration of the change in the transition temperature driven by pressure of−101 K·GPa^(−1) and suitable thermal hysteresis of 11.1 K.Further,the variation of reversibleΔ_(TBCE) against the applied hydrostatic pressure reaches up to 43 K·GPa^(−1),which is at the highest level among the other reported giant barocaloric compounds.More importantly,after 60 thermal cycles,the composite does not break and the calorimetric curves coincide well,demonstrating good thermal cycle stability.展开更多
This paper analyzed GPS data from the Topo-Iberia network spanning almost 12 years(2008-2020).The data quality information for all 26 Topo-Iberia stations is provided for the first time,complementing the Spanish Geolo...This paper analyzed GPS data from the Topo-Iberia network spanning almost 12 years(2008-2020).The data quality information for all 26 Topo-Iberia stations is provided for the first time,complementing the Spanish Geological Survey’s storage work.Data analyses based on quality indicators obtained using TEQC have been carried out.The guidelines and data quality information from the IGS stations have been considered as the quality references,with the stations ALJI,EPCU,and TIOU standing out as the worst stations,while on the contrary,FUEN,PALM,PILA,and TRIA meet the quality requirements to become an IGS station.The relationship between the GPS data quality and their GAMIT-and Gipsy X-derived postfit ionosphere-free phase residuals has also been investigated,and the results reveal an inversely proportional relationship.It has been found that the stations showing an increase in elevation of the horizon line,also show an increase in cycle slips and multipath,are among the poorest quality stations,and among those with the highest postfit RMS of phase residuals.Moreover,the evolution of the vegetation around the antenna should be considered as it could cause a progressive loss of quality,which is not complying with the IGS standards.The quality assessment shows that the Topo-Iberia stations are appropriate for geodetic purposes,but permanent monitoring would be necessary to avoid the least possible loss of data and quality.In addition,a method to characterize the GNSS data quality is proposed.展开更多
Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of...Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.展开更多
The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages(FJBs)consumption.In fact,the consumption of ultra-processed foods has been shown to pose health r...The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages(FJBs)consumption.In fact,the consumption of ultra-processed foods has been shown to pose health risks.In this study,we first integrated 4 systems used to classify the degree of food processing and then classified FJBs into three major categories,low(minimal),moderate and high.Second,we compared the differences in attitudes towards FJBs in dietary guidelines.Third,we integrated the results of existing epidemiological surveys,randomized controlled trials,and animal experiments to explore the health risks associated with consuming FJBs.Deepening the processing of FJBs has been found to lead to an increased risk of diseases.Dietary pattern,nutrients,addition agents and consumer preferences may be influential factors.Finally,we investigated whether there were any changes in the health benefits of 100%fruit juices produced by different processing methods.In conclusion,minimally/moderately processed 100%fruit juices provide more health benefits than highly processed fruit beverages.The results support the need to consider the extent of FJBs processing in future studies to adjust official nutritional recommendations for beverage consumption.展开更多
Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test b...Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations.展开更多
基金National Natural Science Foundation of China,No.72101236China Postdoctoral Science Foundation,No.2022M722900+1 种基金Collaborative Innovation Project of Zhengzhou City,No.XTCX2023006Nursing Team Project of the First Affiliated Hospital of Zhengzhou University,No.HLKY2023005.
文摘BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.
基金Under the auspices of National Natural Science Foundation of China(No.42171230)。
文摘Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金National Natural Science Foundation of China(41771108 and 31570479)the Natural Science Foundation of Jiangxi,China(20212ACB215002
文摘In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs change over time is unclear in riparian forests.In this study,leaf litter of three common species(Alnus sibirica Fisch.ex Turcz,Betula platyphylla Sukaczev,and Betula fruticosa Pall.)were mixed in an equal mass ratio and LMEs were measured for mass and nitrogen(N)remaining in whole litter mixtures over a 3-year period in a boreal riparian forest,northeastern China.LMEs were also assessed for component litter mass and N remaining by separating litter mixtures by species.During the decay of litter mixtures,antagonistic effects on mass and N remaining were dominant after one and two years of decay,whereas only additive effects were observed after three years.LMEs correlated negatively with functional diversity after the first and two years of decay but disappeared after three years.When sorting litter mixtures by species,non-additive LMEs on mass and N remaining decreased over incubation time.Moreover,non-additive LMEs were more frequent for litter of both B.platyphylla and B.fruticosa with lower N concentration than for A.sibirica litter with higher N concentration.These results indicate that incubation time is a key determinant of litter mixing effects during decay and highlight that late-stage litter mixture decay may be predicted from single litter decay dynamics in boreal riparian forests.
基金the Youth Growth Technology Project,Science and Technology Department of Jilin Province(20230508130RC)Bureau of Forestry and Landscaping of Changchun.
文摘Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925304 and 12020101002)the Chinese Academy of Sciences Program(Grant No.GJJSTD20210002).
文摘Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
基金financially supported by the National Key Research and Development Program of China(2022YFA1503504)the National Natural Science Foundation of China(22038003,22178100,22178101,and U22B20141)+3 种基金the Shanghai Pilot Program for Basic Research(22TQ1400100-15)the Innovation Program of Shanghai Municipal Education Commissionthe Program of Shanghai Academic/Technology Research Leader(21XD1421000)the Shanghai Science and Technology Innovation Action Plan(22JC1403800)。
文摘Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the preparation of carbon nanotube(CNT)and the hydrogenation of 4,6-dinitroresorcinol(DNR)using Fe_(2)O_(3)and Pt catalysts,respectively.Various Fe_(2)O_(3)/Al_(2)O_(3)catalysts were synthesized for CNT growth through catalytic chemical vapor deposition.Our findings reveal a significant influence of Fe_(2)O_(3)nanoparticle size on the structure and yield of CNT.Specifically,CNT produced with Fe_(2)O_(3)/Al_(2)O_(3)containing 28%(mass)Fe loading exhibits abundant surface defects,an increased area for metal-particle immobilization,and a high carbon yield.This makes it a promising candidate for DNR hydrogenation.Utilizing this catalyst support,we further investigate the size effects of Pt nanoparticles on DNR hydrogenation.Larger Pt catalysts demonstrate a preference for 4,6-diaminoresorcinol generation at(100)sites,whereas smaller Pt catalysts are more susceptible to electronic properties.The kinetics insights obtained from this study have the potential to pave the way for the development of more efficient catalysts for both CNT synthesis and DNR hydrogenation.
基金supported by the National Key R&D Program of China(2021YFC2502100,2023YFC3603404,2019YFA0111900)National Natural Science Foundation of China(82072506,82272611,92268115)+7 种基金Hunan Provincial Science Fund for Distinguished Young Scholars(2024JJ2089)Hunan Young Talents of Science and Technology(2021RC3025)Provincial Clinical Medical Technology Innovation Project of Hunan(2023SK2024,2020SK53709)Provincial Natural Science Foundation of Hunan(2020JJ3060)National Natural Science Foundation of Hunan Province(2023JJ30949)National Clinical Research Center for Geriatric Disorders,Xiangya Hospital(2021KFJJ02,2021LNJJ05)the Hunan Provincial Innovation Foundation for Postgraduate(CX20230308,CX20230312)the Independent Exploration and Innovation Project for Postgraduate Students of Central South University(2024ZZTS0163)。
文摘This review compiles information from the literature on the chemical composition,pharmacological effects,and molecular mechanisms of earthworm extract(EE)and suggests possibilities for clinical translation of EE.We also consider future trends and concerns in this domain.We summarize the bioactive components of EE,including G-90,lysenin,lumbrokinase,antimicrobial peptides,earthworm serine protease(ESP),and polyphenols,and detail the antitumor,antithrombotic,antiviral,antibacterial,anti-i nflammatory,analgesic,antioxidant,wound-healing,antifibrotic,and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies.We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies,and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance.The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis.Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix.The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage.Earthworms have evolved a well-developed defense mechanism to fight against microbial infections,and the bioactive agents in EE have shown good antibacterial,fungal,and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections,effectively reducing pain.Recent studies have also highlighted the role of EE in lowering blood glucose.EE shows high medicinal value and is expected to be a source of many bioactive compounds.
文摘The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2022YFE03200200 and 2018YFE0308101)the National Natural Science Foundation of China(Grant No.12105194)the Natural Science Foundation of Sichuan Province,China(Grant Nos.2022NSFSC1265 and 2022NSFSC1251).
文摘Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
基金supported by the National Natural Science Foundation of China(Nos.U2032209,12222512,12375193,12305210)the National Key Research and Development Program of China(No.2021YFA1601300)the CAS“Light of West China”Program,the CAS Pioneer Hundred Talent Program,the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008).
文摘Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the high-resolution online trajectory detection for the Hi’Beam-SEE system,which aims to localize SEE-sensitive positions on the IC at the micrometer scale and in real time.We employed a reparameterization method to accelerate the inference speed,merging the branches of the backbone of the location in the deployment scenario.Additionally,we designed an irregular convolution kernel,an attention mechanism,and a fused loss function to improve the positioning accuracy.OML demonstrates exceptional realtime processing capabilities,achieving a positioning accuracy of 1.83μm in processing data generated by the Hi’Beam-SEE system at 163 frames per second per GPU.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2021JJ40444,and 2019JJ30019)+3 种基金the Research Foundation of Education Bureau of Hunan Province of China(Grant No.20A430)the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC3054)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN-0015)the Doctoral Research Fund of University of South China。
文摘Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.
基金supported by the National Natural Science Foundation of China[Grant Nos.42375177,41975141]Natural Science Foundation of Gansu[Grant No.23JRRA1079]Fundamental Research Funds for the Central Universities[number:lzujbky-2023-it29].
文摘Climate change is the most significant threat to public health and exerts myriad influences on health,including the occurrence of extreme temperature events.Studies have demonstrated that populations will experience significantly severe cold waves in the future^([1]),increasing the risk of respiratory diseases.
基金the National Natural Science Foundation of China(Grant Nos.42205059 and 42005075)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23090303 and XDB40010302)+1 种基金the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2024 and SKLCS-ZZ-2023)the Key Laboratory of Mountain Hazards and Earth Surface Processes.
文摘Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.
基金Project supported by the Shanghai Science and Technology Innovation Action(Grant No.22dz1208700).
文摘Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.
基金financially supported by the National Natural Science Foundation of China(Nos.52301248,52271166,52071071,and 52275567)the Foundational Research Project of Shanxi Province,China(Nos.202203021222201 and 202203021212304)+1 种基金PhD Research Startup Foundation of Taiyuan University of Science and Technology(No.20222057)PhD Research Startup Foundation of Shanxi Province,China(No.20232051)。
文摘Hexagonal MnMX-based(M=Co or Ni,X=Si or Ge)alloys exhibit giant reversible barocaloric effects.However,giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders,and inevitably bring the deterioration of mechanical properties and formability.Grain fragmentation can bring degradation of structural transformation entropy change during cyclic application and removal of pressure.In this paper,giant reversible barocaloric effects with high thermal cycle stability can be achieved in the epoxy bonded(MnCoGe)0.96(CuCoSn)0.04 composite.Giant reversible isothermal entropy change of 43.0 J·kg^(−1)·K^(−1) and adiabatic temperature change from barocaloric effects(ΔT_(BCE))of 15.6 K can be obtained within a wide temperature span of 30 K at 360 MPa,which is mainly attributed to the integration of the change in the transition temperature driven by pressure of−101 K·GPa^(−1) and suitable thermal hysteresis of 11.1 K.Further,the variation of reversibleΔ_(TBCE) against the applied hydrostatic pressure reaches up to 43 K·GPa^(−1),which is at the highest level among the other reported giant barocaloric compounds.More importantly,after 60 thermal cycles,the composite does not break and the calorimetric curves coincide well,demonstrating good thermal cycle stability.
基金supported in part by the University of Jaén and the Spanish Ministry of Economy, Industry and Competitiveness (PTA2015-11507-I MINECO)。
文摘This paper analyzed GPS data from the Topo-Iberia network spanning almost 12 years(2008-2020).The data quality information for all 26 Topo-Iberia stations is provided for the first time,complementing the Spanish Geological Survey’s storage work.Data analyses based on quality indicators obtained using TEQC have been carried out.The guidelines and data quality information from the IGS stations have been considered as the quality references,with the stations ALJI,EPCU,and TIOU standing out as the worst stations,while on the contrary,FUEN,PALM,PILA,and TRIA meet the quality requirements to become an IGS station.The relationship between the GPS data quality and their GAMIT-and Gipsy X-derived postfit ionosphere-free phase residuals has also been investigated,and the results reveal an inversely proportional relationship.It has been found that the stations showing an increase in elevation of the horizon line,also show an increase in cycle slips and multipath,are among the poorest quality stations,and among those with the highest postfit RMS of phase residuals.Moreover,the evolution of the vegetation around the antenna should be considered as it could cause a progressive loss of quality,which is not complying with the IGS standards.The quality assessment shows that the Topo-Iberia stations are appropriate for geodetic purposes,but permanent monitoring would be necessary to avoid the least possible loss of data and quality.In addition,a method to characterize the GNSS data quality is proposed.
基金financially supported by National Natural Science Foundation of China(Nos.12172379,12322211,and 11925207)。
文摘Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.
基金funded by the National Natural Science Foundation Program of China(31901707)the 2115 Talent Development Program of China Agricultural University。
文摘The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages(FJBs)consumption.In fact,the consumption of ultra-processed foods has been shown to pose health risks.In this study,we first integrated 4 systems used to classify the degree of food processing and then classified FJBs into three major categories,low(minimal),moderate and high.Second,we compared the differences in attitudes towards FJBs in dietary guidelines.Third,we integrated the results of existing epidemiological surveys,randomized controlled trials,and animal experiments to explore the health risks associated with consuming FJBs.Deepening the processing of FJBs has been found to lead to an increased risk of diseases.Dietary pattern,nutrients,addition agents and consumer preferences may be influential factors.Finally,we investigated whether there were any changes in the health benefits of 100%fruit juices produced by different processing methods.In conclusion,minimally/moderately processed 100%fruit juices provide more health benefits than highly processed fruit beverages.The results support the need to consider the extent of FJBs processing in future studies to adjust official nutritional recommendations for beverage consumption.
基金The work described here has been supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under grant agreement 881771).
文摘Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations.