目的:为提高精子形态学分类的准确性,提出一种基于卷积神经网络的精子分类模型。方法:使用EfficientNetB0作为基础模型,通过数据预处理增强、迁移学习以及余弦衰减进行微调,构建FT-EfficientNet模型。在精子公开数据集SCIAN-Morpho和HuS...目的:为提高精子形态学分类的准确性,提出一种基于卷积神经网络的精子分类模型。方法:使用EfficientNetB0作为基础模型,通过数据预处理增强、迁移学习以及余弦衰减进行微调,构建FT-EfficientNet模型。在精子公开数据集SCIAN-Morpho和HuSHeM上进行分类实验,利用5折交叉验证对数据集进行分割与验证,并与级联式的支持向量机(cascade ensemble of support vector machines,CE-SVM)模型、基于块的自适应字典学习(adaptive patchbased dictionary learning,APDL)模型、微调可视几何组(fine tuning of visual geometry group,FT-VGG)模型、人类精子头部形态分类(morphological classification of human sperm heads,MC-HSH)模型、迁移学习(transfer learning,TL)模型的分类结果进行对比。在SCIAN-Morpho数据集中进行消融实验,验证不同微调方法对模型的影响。结果:FT-EfficientNet模型在SCIAN-Morpho验证集上的准确率、精确度及F_(1)分数分别为64.1%、63.8%和64.8%,优于CE-SVM、APDL、FT-VGG、MC-HSH模型,召回率为65.2%,略低于MC-HSH模型(68.0%)。FT-EfficientNet模型在HuSHeM验证集上的准确率、精确度、F_(1)分数、召回率分别为95.4%、95.8%、95.4%和96.0%,略低于TL模型,但优于CE-SVM、APDL、FT-VGG、MC-HSH模型。消融实验结果表明,FT-EfficientNet模型应用的微调方法所得结果最优。结论:基于卷积神经网络的精子分类模型能够完成精子形态学分类,提升分类的准确度及性能。展开更多
不正确的坐姿通常会导致青少年近视、脊柱侧弯和退行性疾病。研究能够快速、准确识别不规律坐姿的智能监测技术,有助于保持正确的姿势并预防健康问题。为了解决RGB图像易受光照强度以及遮挡因素的干扰并造成的识别率不高等问题,通过采...不正确的坐姿通常会导致青少年近视、脊柱侧弯和退行性疾病。研究能够快速、准确识别不规律坐姿的智能监测技术,有助于保持正确的姿势并预防健康问题。为了解决RGB图像易受光照强度以及遮挡因素的干扰并造成的识别率不高等问题,通过采用双流RGB-D图像作为双输入,利用ResNet网络中的残差结构改进EfficientNet基线网络结构,提出了一种基于改进R-EfficientNet的双流RGB-D多模态信息融合的坐姿识别方法。试验结果表明,提出的R-EfficientNet融合方法模型对8种坐姿的识别均值平均精度(mean average precision,mAP)达到了98.5%。与CNN、Vgg16、ResNet18、EfficientNet、RGB-D不同的输入方法相比,所提方法获得了最高的识别率。该方法不仅可以用于坐姿客观监测,具有医学和社会效益,此外还为人体工学研究者们提供改进办公家具的方案。展开更多
文摘由于桥梁裂缝图像具有分布不规则、缝宽较小、背景像素比例较高等特性,为提高其检测精度和速度,提出了一种改进的YOLOv4算法,优化原主干网络CSPDarkNet53为EfficientNet B7网络以增强特征学习能力,并使用深度可分离卷积代替标准卷积,在提升模型运行效率的同时,也提高了其检测精度和准确率.并通过平移、旋转等数据增强方法将数据集正负样本扩增至6371张,增强了网络的拟合效果和泛化能力.实验结果表明:YOLOv4-EfficientNet B7的均值平均精度(Mean Average Precision,mAP)为80.11%,比YOLOv4的高出3.85%;检测精确率(precision)为80.13%,召回率(recall)由74.34%提升至78.63%,F1值(F1-score)高达80.61%,提高了2.94%;相较于原YOLOv4算法,检测精确率提高了1.86%,召回率增长了4.29%;与其他主流的裂缝检测算法相比,本算法在mAP和召回率上都有了显著提升,实现了精确检测桥梁裂缝的目的.
文摘目的:为提高精子形态学分类的准确性,提出一种基于卷积神经网络的精子分类模型。方法:使用EfficientNetB0作为基础模型,通过数据预处理增强、迁移学习以及余弦衰减进行微调,构建FT-EfficientNet模型。在精子公开数据集SCIAN-Morpho和HuSHeM上进行分类实验,利用5折交叉验证对数据集进行分割与验证,并与级联式的支持向量机(cascade ensemble of support vector machines,CE-SVM)模型、基于块的自适应字典学习(adaptive patchbased dictionary learning,APDL)模型、微调可视几何组(fine tuning of visual geometry group,FT-VGG)模型、人类精子头部形态分类(morphological classification of human sperm heads,MC-HSH)模型、迁移学习(transfer learning,TL)模型的分类结果进行对比。在SCIAN-Morpho数据集中进行消融实验,验证不同微调方法对模型的影响。结果:FT-EfficientNet模型在SCIAN-Morpho验证集上的准确率、精确度及F_(1)分数分别为64.1%、63.8%和64.8%,优于CE-SVM、APDL、FT-VGG、MC-HSH模型,召回率为65.2%,略低于MC-HSH模型(68.0%)。FT-EfficientNet模型在HuSHeM验证集上的准确率、精确度、F_(1)分数、召回率分别为95.4%、95.8%、95.4%和96.0%,略低于TL模型,但优于CE-SVM、APDL、FT-VGG、MC-HSH模型。消融实验结果表明,FT-EfficientNet模型应用的微调方法所得结果最优。结论:基于卷积神经网络的精子分类模型能够完成精子形态学分类,提升分类的准确度及性能。
文摘不正确的坐姿通常会导致青少年近视、脊柱侧弯和退行性疾病。研究能够快速、准确识别不规律坐姿的智能监测技术,有助于保持正确的姿势并预防健康问题。为了解决RGB图像易受光照强度以及遮挡因素的干扰并造成的识别率不高等问题,通过采用双流RGB-D图像作为双输入,利用ResNet网络中的残差结构改进EfficientNet基线网络结构,提出了一种基于改进R-EfficientNet的双流RGB-D多模态信息融合的坐姿识别方法。试验结果表明,提出的R-EfficientNet融合方法模型对8种坐姿的识别均值平均精度(mean average precision,mAP)达到了98.5%。与CNN、Vgg16、ResNet18、EfficientNet、RGB-D不同的输入方法相比,所提方法获得了最高的识别率。该方法不仅可以用于坐姿客观监测,具有医学和社会效益,此外还为人体工学研究者们提供改进办公家具的方案。