The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficie...Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.展开更多
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金supported by the National Natural Science Foundation of China(42304056)the Natural Science Foundation of Hebei Province(D2023305007)+1 种基金supported by the Basic Research Project(GP2020-017,GP2020027)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT of Korea。
文摘Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.