期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Lower Bounds of Eigenvalues of the Stokes Operator by Nonconforming Finite Elements on Local Quasi-Uniform Grids
1
作者 Youai Li 《Advances in Applied Mathematics and Mechanics》 SCIE 2019年第1期241-254,共14页
This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.T... This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.The main ingredient are a novel and sharp L^(2) error estimate of discrete eigenfunctions,and a new error analysis of nonconforming finite element methods. 展开更多
关键词 lower bound eigenvalue nonconforming finite element method Stokes operator
原文传递
Gershgorin and Rayleigh Bounds on the Eigenvalues of the Finite-Element Global Matrices via Optimal Similarity Transformations
2
作者 Isaac Fried Roberto Riganti Chen Yu 《Applied Mathematics》 2020年第9期922-941,共20页
The large finite element global stiffness matrix is an algebraic, discreet, even-order, differential operator of zero row sums. Direct application of the, practically convenient, readily applied, Gershgorin’s eigenva... The large finite element global stiffness matrix is an algebraic, discreet, even-order, differential operator of zero row sums. Direct application of the, practically convenient, readily applied, Gershgorin’s eigenvalue bounding theorem to this matrix inherently fails to foresee its positive definiteness, predictably, and routinely failing to produce a nontrivial lower bound on the least eigenvalue of this, theoretically assured to be positive definite, matrix. Considered here are practical methods for producing an optimal similarity transformation for the finite-elements global stiffness matrix, following which non trivial, realistic, lower bounds on the least eigenvalue can be located, then further improved. The technique is restricted here to the common case of a global stiffness matrix having only non-positive off-diagonal entries. For such a matrix application of the Gershgorin bounding method may be carried out by a mere matrix vector multiplication. 展开更多
关键词 finite elements Global Stiffness Matrix Gershgorin and Rayleigh Computed Upper and lower Bounds on the Extremal eigenvalues Similarity Transformations
下载PDF
HIGH ACCURACY ANALYSIS OF ELLIPTIC EIGENVALUE PROBLEM FOR THE WILSON NONCONFORMING FINITE ELEMENT 被引量:2
3
作者 吴冬生 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2001年第2期200-206,共7页
In this paper, the Wilson nonconforming finite element is considered for solving elliptic eigenvalue problems. Based on an interpolation postprocessing, superconvergence estimates of both eigenfunction and eigenvalue... In this paper, the Wilson nonconforming finite element is considered for solving elliptic eigenvalue problems. Based on an interpolation postprocessing, superconvergence estimates of both eigenfunction and eigenvalue are obtained. 展开更多
关键词 eigenvalue problems high accuracy analysis interpolation postprocessing Wilson nonconforming finite element
全文增补中
FINITE ELEMENT APPROXIMATION OF EIGENVALUE PROBLEM FOR A COUPLED VIBRATION BETWEEN ACOUSTIC FIELD AND PLATE 被引量:1
4
作者 L. Deng T. Kako(Department of Computer Science and information Mathematics, The University of Electro-Communications, Japan) 《Journal of Computational Mathematics》 SCIE CSCD 1997年第3期265-278,共14页
We formulate a coupled vibration between plate and acoustic field in mathematically rigorous fashion. It leads to a non-standard eigenvalue problem. A finite element approximation is considered in an abstract way, and... We formulate a coupled vibration between plate and acoustic field in mathematically rigorous fashion. It leads to a non-standard eigenvalue problem. A finite element approximation is considered in an abstract way, and the approximate eigenvalue problem is written in an operator form by means of some Ritz projections. The order of convergence is proved based on the result of Babugka and Osborn. Some numerical example is shown for the problem for which the exact analytical solutions are calculated. The results shows that the convergence order is consistent with the one by the numerical analysis. 展开更多
关键词 finite element approximation OF eigenvalue PROBLEM FOR A COUPLED VIBRATION BETWEEN ACOUSTIC FIELD AND PLATE
原文传递
Nonconforming Finite Element Method for the Transmission Eigenvalue Problem
5
作者 Xia Ji Yingxia Xi Hehu Xie 《Advances in Applied Mathematics and Mechanics》 SCIE 2017年第1期92-103,共12页
In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation... In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation are given,respectively.Finally,some numerical examples are provided to validate the theoretical results. 展开更多
关键词 Transmission eigenvalue Morley element nonconforming finite element method
原文传递
The Lower Bounds of Eigenvalues by the Wilson Element in Any Dimension
6
作者 Youai Li 《Advances in Applied Mathematics and Mechanics》 SCIE 2011年第5期598-610,共13页
In this paper,we analyze the Wilson element method of the eigenvalue problem in arbitrary dimensions by combining a new technique recently developed in[10]and the a posteriori error result.We prove that the discrete e... In this paper,we analyze the Wilson element method of the eigenvalue problem in arbitrary dimensions by combining a new technique recently developed in[10]and the a posteriori error result.We prove that the discrete eigenvalues are smaller than the exact ones. 展开更多
关键词 The lower approximation the Wilson element the eigenvalue problem
原文传递
A POSTERIORI ERROR ESTIMATES IN ADINI FINITE ELEMENT FOR EIGENVALUE PROBLEMS 被引量:13
7
作者 Yi-du Yang (Department of Mathematics, Guizhou Normal University, Guiyang, 550001) 《Journal of Computational Mathematics》 SCIE EI CSCD 2000年第4期413-418,共6页
In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the orde... In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the order of convergence of the λ[sub h] is just 2 and the converge from below for sufficiently small h. [ABSTRACT FROM AUTHOR] 展开更多
关键词 eigenvalue nonconforming finite element error estimate
原文传递
NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM
8
作者 Hal Bi Yidu Yang +1 位作者 Yuanyuan Yu Jiayu Han 《Journal of Computational Mathematics》 SCIE CSCD 2018年第5期682-692,共11页
This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average inter... This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix- Raviart element, and prove a new and optimal error estimate in || ||o,δΩ for the eigenfunc- tion of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis. 展开更多
关键词 Steklov eigenvalue problem Concave polygonal domain Linear conforming finite element nonconforming Crouzeix-Raviart element Error estimates.
原文传递
TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS 被引量:5
9
作者 Yidu Yang 《Journal of Computational Mathematics》 SCIE CSCD 2009年第6期748-763,共16页
This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In... This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly. 展开更多
关键词 nonconforming finite elements Rayleigh quotient Two-grid schemes The lower bounds of eigenvalue High accuracy.
原文传递
A POSTERIORI ERROR ANALYSIS OF NONCONFORMING METHODS FOR THE EIGENVALUE PROBLEM 被引量:2
10
作者 Youai LiCollege of Computer and Information Engineering, Beijing Technology and Business University, Beijing100048,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期495-502,共8页
This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error... This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems. 展开更多
关键词 A posteriori error analysis eigenvalue problem nonconforming finite element.
原文传递
The Weak Galerkin Method for Elliptic Eigenvalue Problems 被引量:5
11
作者 Qilong Zhai Hehu Xie +1 位作者 Ran Zhang Zhimin Zhang 《Communications in Computational Physics》 SCIE 2019年第6期160-191,共32页
This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomi... This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results. 展开更多
关键词 Weak Galerkin finite element method elliptic eigenvalue problem lower bounds error estimate
原文传递
THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS
12
作者 Qilong Zhai Xiaozhe Hu Ran Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2020年第4期606-623,共18页
This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed me... This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed method.The error estimates for both eigenvalue and eigenfunction are provided and asymptotic lower bounds are shown as well under some conditions.Numerical examples are presented to validate the theoretical analysis. 展开更多
关键词 Weak Galerkin finite element method eigenvalue problem Shifted-inverse power method lower bound
原文传递
特征值问题的Lagrange型各向异性有限元方法 被引量:3
13
作者 彭玉成 石东洋 《应用数学》 CSCD 北大核心 2006年第3期512-518,共7页
在各向异性网格下首先研究了二阶椭圆特征值问题算子谱逼近的若干抽象结果.然后将这些结果具体应用于线性和双线性Lagrange型协调有限元,得到了与传统有限元网格剖分下相同的最优误差估计,从而拓宽了已有的成果.
关键词 特征值问题 算子谱逼近 Lagrange型有限元 各向异性网格 最优误差估计
下载PDF
特征值问题迭代伽略金法与Rayleigh商加速 被引量:6
14
作者 杨一都 《工程数学学报》 CSCD 北大核心 2008年第3期480-488,共9页
该文讨论特征值问题非协调有限元和混合有限元的加速计算方法。基于迭代伽略金法和Rayleigh商加速技巧,我们建立了特征值问题Wilson非协调有限元和Ciarlet-Raviart混合有限元的加速计算方案。这些新方案把在细网格上解一个特征值问题简... 该文讨论特征值问题非协调有限元和混合有限元的加速计算方法。基于迭代伽略金法和Rayleigh商加速技巧,我们建立了特征值问题Wilson非协调有限元和Ciarlet-Raviart混合有限元的加速计算方案。这些新方案把在细网格上解一个特征值问题简化为在粗网格上解一个特征值问题和在细网格上解一个线性方程。文中证明了新方案的计算结果仍然保持了渐近最优精度阶,并用数值实验验证了理论结果。 展开更多
关键词 特征值 Wilson非协调有限元 Ciarlet-Raviart混合有限元 迭代伽略金法 RAYLEIGH商
下载PDF
用有限元亏量校正求特征值下界 被引量:4
15
作者 杨一都 《工程数学学报》 CSCD 北大核心 2006年第1期99-106,共8页
对解2阶椭圆特征值问题的线性有限元法,本文考虑了一种计算简单的有限元亏量校正方案。基于插值校正和Rayleigh商给出了新的校正特征值。理论分析表明该校正特征值或者达到二次元的精度阶或者当网格直径充分小时下逼近准确特征值,并用... 对解2阶椭圆特征值问题的线性有限元法,本文考虑了一种计算简单的有限元亏量校正方案。基于插值校正和Rayleigh商给出了新的校正特征值。理论分析表明该校正特征值或者达到二次元的精度阶或者当网格直径充分小时下逼近准确特征值,并用数值实验验证了理论结果。 展开更多
关键词 有限元 亏量校正 RAYLEIGH商 特征值下界
下载PDF
Stokes方程非协调有限元逼近的快速迭代过程
16
作者 陈素琴 姜存礼 +1 位作者 黄自萍 顾明 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 1998年第1期94-100,共7页
对Stokes方程的非协调有限元逼近提出了一个快速计算方法.基本思想是把原来的对称不定问题的计算转化为对称正定问题的计算,这个对称正定问题将由共轭斜量法求解,而共轭斜量法中每步这代的计算需要求解带正定矩阵的线性代数方程组,... 对Stokes方程的非协调有限元逼近提出了一个快速计算方法.基本思想是把原来的对称不定问题的计算转化为对称正定问题的计算,这个对称正定问题将由共轭斜量法求解,而共轭斜量法中每步这代的计算需要求解带正定矩阵的线性代数方程组,采用亏量校正算法来近似求解. 展开更多
关键词 STOKES方程 非协调 有限元逼近 快速迭代过程
下载PDF
混合有限元方法的一个应用(英文)
17
作者 彭玉成 石东洋 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2007年第2期129-132,共4页
一个非协调矩形混合有限元方法应用于二维空间的定常Stokes类型的特征值问题的数值解,并且给出了特征对的最优误差估计.
关键词 非协调混合有限元 特征值问题 定常STOKES方程
下载PDF
定常Navier-Stokes方程的非协调四边形元方法
18
作者 田卫军 《云南民族大学学报(自然科学版)》 CAS 2007年第2期111-116,共6页
Douglas提出的非协调元具有很好的稳定性,在矩形元上对速度增加了协调泡函数并对压力取间断分片常数.回顾了运用非协调矩形元方法求解定常N-S方程解的稳定性和误差估计;证明了逼近解的存在唯一并给出了数值实验.
关键词 定常N—S方程 非协调矩形元方法 逼近解的存在唯一性
下载PDF
非协调有限元方法求解定常Navier-Stokes方程
19
作者 田卫军 《咸阳师范学院学报》 2006年第6期8-11,30,共5页
用非协调有限元方法进行定常Navier-Stokes方程的求解,证明了解的稳定性问题,对揭示逼近解的变化规律有重要意义,为数值求解定常Navier-Stokes方程提供了新的思路。
关键词 NAVIER-STOKES方程 非协调有限元方法 解的稳定性
下载PDF
一类四阶Sigroniri型问题的非协调元逼近
20
作者 邓庆平 《苏州大学学报(自然科学版)》 CAS 1992年第1期16-20,共5页
本文以Morely元为例,研究了一个由一类四阶Sigroniri型问题引起的四阶变分不等式的非协调元逼近,导出了近似解的误差估计。
关键词 变分不等式 非协调元逼近 误差
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部