This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.T...This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.The main ingredient are a novel and sharp L^(2) error estimate of discrete eigenfunctions,and a new error analysis of nonconforming finite element methods.展开更多
The large finite element global stiffness matrix is an algebraic, discreet, even-order, differential operator of zero row sums. Direct application of the, practically convenient, readily applied, Gershgorin’s eigenva...The large finite element global stiffness matrix is an algebraic, discreet, even-order, differential operator of zero row sums. Direct application of the, practically convenient, readily applied, Gershgorin’s eigenvalue bounding theorem to this matrix inherently fails to foresee its positive definiteness, predictably, and routinely failing to produce a nontrivial lower bound on the least eigenvalue of this, theoretically assured to be positive definite, matrix. Considered here are practical methods for producing an optimal similarity transformation for the finite-elements global stiffness matrix, following which non trivial, realistic, lower bounds on the least eigenvalue can be located, then further improved. The technique is restricted here to the common case of a global stiffness matrix having only non-positive off-diagonal entries. For such a matrix application of the Gershgorin bounding method may be carried out by a mere matrix vector multiplication.展开更多
In this paper, the Wilson nonconforming finite element is considered for solving elliptic eigenvalue problems. Based on an interpolation postprocessing, superconvergence estimates of both eigenfunction and eigenvalue...In this paper, the Wilson nonconforming finite element is considered for solving elliptic eigenvalue problems. Based on an interpolation postprocessing, superconvergence estimates of both eigenfunction and eigenvalue are obtained.展开更多
We formulate a coupled vibration between plate and acoustic field in mathematically rigorous fashion. It leads to a non-standard eigenvalue problem. A finite element approximation is considered in an abstract way, and...We formulate a coupled vibration between plate and acoustic field in mathematically rigorous fashion. It leads to a non-standard eigenvalue problem. A finite element approximation is considered in an abstract way, and the approximate eigenvalue problem is written in an operator form by means of some Ritz projections. The order of convergence is proved based on the result of Babugka and Osborn. Some numerical example is shown for the problem for which the exact analytical solutions are calculated. The results shows that the convergence order is consistent with the one by the numerical analysis.展开更多
In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation...In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation are given,respectively.Finally,some numerical examples are provided to validate the theoretical results.展开更多
In this paper,we analyze the Wilson element method of the eigenvalue problem in arbitrary dimensions by combining a new technique recently developed in[10]and the a posteriori error result.We prove that the discrete e...In this paper,we analyze the Wilson element method of the eigenvalue problem in arbitrary dimensions by combining a new technique recently developed in[10]and the a posteriori error result.We prove that the discrete eigenvalues are smaller than the exact ones.展开更多
In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the orde...In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the order of convergence of the λ[sub h] is just 2 and the converge from below for sufficiently small h. [ABSTRACT FROM AUTHOR]展开更多
This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average inter...This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix- Raviart element, and prove a new and optimal error estimate in || ||o,δΩ for the eigenfunc- tion of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.展开更多
This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In...This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly.展开更多
This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error...This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.展开更多
This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomi...This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results.展开更多
This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed me...This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed method.The error estimates for both eigenvalue and eigenfunction are provided and asymptotic lower bounds are shown as well under some conditions.Numerical examples are presented to validate the theoretical analysis.展开更多
基金The author would like to thank Prof.Shangyou Zhang for helping the numerical experiments.The author was supported by the NSFC under Grants Nos.11571023 and 11401015.
文摘This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.The main ingredient are a novel and sharp L^(2) error estimate of discrete eigenfunctions,and a new error analysis of nonconforming finite element methods.
文摘The large finite element global stiffness matrix is an algebraic, discreet, even-order, differential operator of zero row sums. Direct application of the, practically convenient, readily applied, Gershgorin’s eigenvalue bounding theorem to this matrix inherently fails to foresee its positive definiteness, predictably, and routinely failing to produce a nontrivial lower bound on the least eigenvalue of this, theoretically assured to be positive definite, matrix. Considered here are practical methods for producing an optimal similarity transformation for the finite-elements global stiffness matrix, following which non trivial, realistic, lower bounds on the least eigenvalue can be located, then further improved. The technique is restricted here to the common case of a global stiffness matrix having only non-positive off-diagonal entries. For such a matrix application of the Gershgorin bounding method may be carried out by a mere matrix vector multiplication.
文摘In this paper, the Wilson nonconforming finite element is considered for solving elliptic eigenvalue problems. Based on an interpolation postprocessing, superconvergence estimates of both eigenfunction and eigenvalue are obtained.
文摘We formulate a coupled vibration between plate and acoustic field in mathematically rigorous fashion. It leads to a non-standard eigenvalue problem. A finite element approximation is considered in an abstract way, and the approximate eigenvalue problem is written in an operator form by means of some Ritz projections. The order of convergence is proved based on the result of Babugka and Osborn. Some numerical example is shown for the problem for which the exact analytical solutions are calculated. The results shows that the convergence order is consistent with the one by the numerical analysis.
基金Xia Ji is supported by the National Natural Science Foundation of China(No.11271018,No.91230203)the Special Funds for National Basic Research Program of China(973 Program 2012CB025904 and 863 Program 2012AA01A309)+1 种基金the national Center for Mathematics and Interdisciplinary Science,CAS.Hehu Xie is supported in part by the National Natural Science Foundations of China(NSFC 91330202,11001259,11371026,11031006,2011CB309703)the national Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CAS。
文摘In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation are given,respectively.Finally,some numerical examples are provided to validate the theoretical results.
基金The work is supported by the PHR(IHLB)project under Grant PHR20110874the NSFC project under Grant 11101013the PHR(IHLB)project under Grant PHR201102.
文摘In this paper,we analyze the Wilson element method of the eigenvalue problem in arbitrary dimensions by combining a new technique recently developed in[10]and the a posteriori error result.We prove that the discrete eigenvalues are smaller than the exact ones.
文摘In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the order of convergence of the λ[sub h] is just 2 and the converge from below for sufficiently small h. [ABSTRACT FROM AUTHOR]
文摘This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix- Raviart element, and prove a new and optimal error estimate in || ||o,δΩ for the eigenfunc- tion of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
基金supported by National Natural Science Foundation of China (No. 10761003)by the Foundation of Guizhou Province Scientific Research for Senior Personnel, China
文摘This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser mesh together with the solution of a linear algebraic system on the fine mesh. The resulting solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid discretization scheme of the conforming finite elements, the main advantages of our new schemes are twofold when the mesh size is small enough. First, the lower bounds of the exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first eigenvalue given by the new schemes has much better accuracy than that obtained by solving the eigenvalue problems on the fine mesh directly.
文摘This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.
基金supported in part by China Natural National Science Foundation(91630201,U1530116,11771179)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,P.R.China+3 种基金supported in part by the National Natural Science Foundation of China(NSFC 11471031,91430216)and the U.S.National Science Foundation(DMS–1419040)supported by Science Challenge Project(No.TZ2016002)National Natural Science Foundations of China(NSFC 11771434,91330202,11371026,91430108,11771322,11626033,11601368)the National Center for Mathematics and Interdisciplinary Science,CAS.
文摘This article is devoted to studying the application of the weak Galerkin(WG)finite element method to the elliptic eigenvalue problem with an emphasis on obtaining lower bounds.The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions.The non-conforming finite element space of the WG method is the key of the lower bound property.It also makes the WG method more robust and flexible in solving eigenvalue problems.We demonstrate that the WG method can achieve arbitrary high convergence order.This is in contrast with existing nonconforming finite element methods which can provide lower bound approximations by linear finite elements.Numerical results are presented to demonstrate the efficiency and accuracy of the theoretical results.
基金The work of Q.Zhai was partially supported by China Postdoc total Science Foundation(2018M640013,2019T120008)The work of X.Hu was partially supported by NSF grant(DMS-1620063)+1 种基金The work of R.Zhang was supported in part by China Natural National Science Foundation(91630201,11871245,11771179)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,P.R.China.
文摘This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique.A high order lower bound can be obtained at a relatively low cost via the proposed method.The error estimates for both eigenvalue and eigenfunction are provided and asymptotic lower bounds are shown as well under some conditions.Numerical examples are presented to validate the theoretical analysis.