Background This study investigated effects of different methionine(Met)supplementation levels in a reduced protein diet on growth performance,intestinal health,and different physiological parameters in broilers under ...Background This study investigated effects of different methionine(Met)supplementation levels in a reduced protein diet on growth performance,intestinal health,and different physiological parameters in broilers under Eimeria challenge.A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E.maxima,E.tenella,and E.acervulina,and randomly allocated in a 2×5 factorial arrangement.Birds received normal protein diets(20%crude protein,NCP)or reduced protein diets(17%crude protein,LCP),containing 2.8,4.4,6.0,7.6,and 9.2 g/kg of Met.Results On 6 and 9 days post inoculation(DPI),increasing Met level linearly improved the growth performance(P<0.05).Total oocyst shedding linearly increased as Met level increased(P<0.05).Duodenal villus height(VH):crypt depth(CD)in the LCP groups were higher on 6 DPI(P<0.01)while lower on 9 DPI(P<0.05)compared to the NCP groups.Jejunal CD and duodenal VH:CD changed quadratically as Met level increased(P<0.05).On 6 DPI,liver glutathione(GSH)and glutathione disulfide(GSSG)linearly increased as Met level increased(P<0.05).On 9 DPI,GSSG quadratically increased,whereas GSH:GSSG quadratically decreased as Met levels increased(P<0.05).The expression of amino acid transporters linearly decreased as Met level increased(P<0.05).The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased(P<0.05).The expressions of cytokines were lower in the LCP groups than the NCP groups(P<0.05).Interaction effects were found for the expression of IL-10 and TNFαon 6 DPI(P<0.05),where it only changed quadratically in the NCP group as Met level increased.The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI(P<0.05).The expression of these genes linearly or quadratically decreased as Met level increased(P<0.05).Conclusion These results revealed the regulatory roles of Met in different physiological parameters including oxidative status,intestinal health,and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.展开更多
Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported....Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.展开更多
Evidence showed that N6-methyladenosine(m^(6)A)modification plays a pivotal role in influencing RNA fate and is strongly associated with cell growth and developmental processes in many species.However,no information r...Evidence showed that N6-methyladenosine(m^(6)A)modification plays a pivotal role in influencing RNA fate and is strongly associated with cell growth and developmental processes in many species.However,no information regarding m^(6)A modification in Eimeria tenella is currently available.In the present study,we surveyed the transcriptome-wide prevalence of m^(6)A in sporulated oocysts and unsporulated oocysts of E.tenella.Methylated RNA immunoprecipitation sequencing(MeRIP-seq)analysis showed that m^(6)A modification was most abundant in the coding sequences,followed by stop codon.There were 3,903 hypermethylated and 3,178 hypomethylated mRNAs in sporulated oocysts compared with unsporulated oocysts.Further joint analysis suggested that m^(6)A modification of the majority of genes was positively correlated with mRNA expression.The mRNA relative expression and m^(6)A level of the selected genes were confirmed by quantitative reverse transcription PCR(RT-qPCR)and MeRIP-qPCR.GO and KEGG analysis indicated that differentially m^(6)A methylated genes(DMMGs)with significant differences in mRNA expression were closely related to processes such as regulation of gene expression,epigenetic,microtubule,autophagy-other and TOR signaling.Moreover,a total of 96 DMMGs without significant differences in mRNA expression showed significant differences at protein level.GO and pathway enrichment analysis of the 96 genes showed that RNA methylation may be involved in cell biosynthesis and metabolism of E.tenella.We firstly present a map of RNA m^(6)A modification in E.tenella,which provides significant insights into developmental biology of E.tenella.展开更多
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation w...Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation with nutrient regimes.However,the impact of key components of nutrients,especially dissolved organic nitrogen(DON),on the blooms of Karenia spp.is not clear.Quantitative research is still lacking.In this study,the cruise observations,field mesocosm-flask culture experiments,and a multinitrogen-tri-phytoplankton-detritus model(NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp.in the East China Sea.It has a synchronism rhythm of diatom-P.donghaienseKarenia spp.-diatom loop in the field culture experiment,which is consistent with the results of the cruise observation.The results showed that the processes of terrigenous DON(TeDON) and dissolved inorganic nitrogen(DIN:NO_(3)^(-)-N,NH_(4)^(+)-N) absorption promoted P.donghaiense to become the dominant algae in the community;whereas the processes of DON from P.donghaiense absorption promoted Karenia spp.to become the dominant algae in ambient DIN exhaustion.In addition,the three-dimensional fluorescence components of humus C,tyrosine and fulvic acid can indicate the processes of growth and extinction of P.donghaiense and Karenia spp.,respectively.This study infers that P.donghaiense and Karenia spp.regime shift mechanism associated with the nutrient regime in coastal waters,which provides a scientific basis for the environmental management of coastal eco system health.展开更多
Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms ...Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms of Fragaria spp. from January 2021 to February 2022. The plant was introduced in Cameroon in 2018. There are 13 varieties of Fragaria spp. currently cultivated. Among these 13 varieties, eleven are hybrids of Fragaria x ananassa (“Amiga”, “Amine”, “Camarosa”, “Chandler”, “Charlotte”, “Elsanta”, “Gariguette”, “Madame Moutot”, “Ostara”, “Ruby gem” and “San Andreas”), and two of the hybrids of Fragaria vesca (“Maestro” and “Mara des bois”). The cropping system, irrigation system, and type of fertilizers applied differ from one strawberry farm to another. Biofertilizers (such as mycorrhizal), inorganic and organic fertilizers are actually used to improve production. The potential annual production of strawberries from January 2021 to February 2022, estimated based on the survey data, was 21.216 tons for all growers. Among these eight production farms, the Lolodorf BIO Farm presents 6000 kg (six tons) of strawberries and 100,000 stolons (seedlings) produced, from seven varieties of Fragaria spp. cultivated, with 6 varieties which are hybrids variety Fragaria x ananassa (“Amiga”, “Amine”, “Chandler”, “Gariguette”, “Madame Moutot”, and “Ruby gem”), and one which is a hybrid of Fragaria vesca (“Mara des bois”). Certain diseases were also observed and recorded depending on the growing areas.展开更多
The study was conducted to identify Aeromonas spp.and Vibrio spp.from fresh Pangasius fish(n=153)in Cambodia and test their antimicrobial susceptibility to antibiotics.The samples were collected from different wet mar...The study was conducted to identify Aeromonas spp.and Vibrio spp.from fresh Pangasius fish(n=153)in Cambodia and test their antimicrobial susceptibility to antibiotics.The samples were collected from different wet markets of Phnom Penh city and Kampong Thom,and Siem Reap provinces.The bacteria were isolated by using selective medium and their AMR(Antimicrobial Resistance)profile was tested by API 20E technique,respectively.Susceptibility profile was determined for seven antibiotics commonly used.The Vibrio spp.(34.64%,n=53)was found to be higher than Aeromonas spp.(24.83%,n=38).Four Vibrio and four Aeromonas species were identified where V.parahaemolyticus(57%,n=30)was the highest,followed by V.cholerae(38%,n=20),V.fluvialis(3.8%,n=2)and V.aglinolyticus(1.9%,n=1),whereas A.hydrophila(47%,n=18)was the highest,followed by A.hydrophila/caviae(45%,n=17),A.sobria(5%,n=2),A.caviae(2.6%,n=1).All the species presented high multi-resistance to the tested antibiotics.The antibiotic susceptibility profile to ampicillin(74%-100%),ciprofloxacin(7%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(7%-100%),erythromycin(10%-100%)and colistin sulphate(33%-100%)was revealed resistance level in Aeromonas spp.whereas few species of Vibrio spp.resistant to ampicillin(43%-100%),ciprofloxacin(14%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(20%-100%),erythromycin(29%-100%),colistin sulphate(33%-100%)were also identified.The results revealed these Aeromonas spp.and Vibrio spp.are potentially reservoirs of antibiotic resistance genes.MDR(Multidrug Resistance)was widespread among the samples isolated.That is a high-risk source of contamination since those pathogens and antimicrobials are often used.Our findings highlight that the aquatic environment and fresh Pangasius fish act as reservoirs of AMR Aeromonas spp.and Vibrio spp.which underline the need for a judicious use of antimicrobials and timely surveillance of AMR in aquaculture.Overall,the findings of our study indicated the presence of A.hydrophila,A.hydrophila/caviae,A.caviae,A.sobria,V.parahaemolyticus,V.cholerae,V.alginolyticus and V.fluvialis and high MDR.This result will allow us to identify the potential risk over circulating isolates in animal health and public health and the spread through the food chain offering supports for appropriate sanitary actions.展开更多
BACKGROUND Neuropathic pain(NP)is the primary symptom of various neurological condi-tions.Patients with NP often experience mood disorders,particularly depression and anxiety,that can severely affect their normal live...BACKGROUND Neuropathic pain(NP)is the primary symptom of various neurological condi-tions.Patients with NP often experience mood disorders,particularly depression and anxiety,that can severely affect their normal lives.Microglial cells are as-sociated with NP.Excessive inflammatory responses,especially the secretion of large amounts of pro-inflammatory cytokines,ultimately lead to neuroinflam-mation.Microglial pyroptosis is a newly discovered form of inflammatory cell death associated with immune responses and inflammation-related diseases of the central nervous system.METHODS Two models,an in vitro lipopolysaccharide(LPS)-stimulated microglial cell model and a selective nerve injury model using BTX-A and SPP1 knockdown treatments,were used.Key proteins in the pyroptosis signaling pathway,NLRP3-GSDMD,were assessed using western blotting,real-time quantitative polymerase chain reaction,and immunofluorescence.Inflammatory factors[interleukin(IL)-6,IL-1β,and tumor necrosis factor(TNF)-α]were assessed using enzyme-linked immuno-sorbent assay.We also evaluated microglial cell proliferation and apoptosis.Furthermore,we measured pain sensation by assessing the delayed hind paw withdrawal latency using thermal stimulation.RESULTS The expression levels of ACS and GSDMD-N and the mRNA expression of TNF-α,IL-6,and IL-1βwere enhanced in LPS-treated microglia.Furthermore,SPP1 expression was also induced in LPS-treated microglia.Notably,BTX-A inhibited SPP1 mRNA and protein expression in the LPS-treated microglia.Additionally,depletion of SPP1 or BTX-A inhibited cell viability and induced apoptosis in LPS-treated microglia,whereas co-treatment with BTX-A enhanced the effect of SPP1 short hairpin(sh)RNA in LPS-treated microglia.Finally,SPP1 depletion or BTX-A treatment reduced the levels of GSDMD-N,NLPRP3,and ASC and suppressed the production of inflammatory factors.CONCLUSION Notably,BTX-A therapy and SPP1 shRNA enhance microglial proliferation and apoptosis and inhibit microglial death.It improves pain perception and inhibits microglial activation in rats with selective nerve pain.展开更多
Resistant bacteria can be transmitted to humans through feces or contaminated meat from local chickens. Bacterial strains were isolated from the intestinal contents of 400 local chicken samples from various sales site...Resistant bacteria can be transmitted to humans through feces or contaminated meat from local chickens. Bacterial strains were isolated from the intestinal contents of 400 local chicken samples from various sales sites. These strains were then characterized using bacteriological and biochemical methods to identify resistant strains. In a study conducted in Ouagadougou, we systematically collected chicken fecal samples from 20 locations across the city, followed by isolation and identification of Salmonella spp. using specific enrichment and culture methods, as well as Escherichia coli. Bacterial strains were characterized using antibiotic resistance profiles were determined through agar diffusion tests, revealing sensitivity or resistance to a range of antibiotics based on established scientific criteria. The results showed that out of the 400 samples collected, 81.25% and 63.5% were contaminated by Escherichia coli and Salmonella spp., respectively. Among these, 86.15% of identified Escherichia coli and 50.78% of Salmonella spp. displayed resistance to at least one tested antibiotic. Among 280 Escherichia coli isolates identified resistant to at least one antibiotic, 31.07% were resistant to cefotaxime (CTX), 20.35% to ceftazidime (CAZ), 21.07% to ceftriaxone (CTR), 75% to amoxicillin clavulanic acid (AMC), 23.57% aztreoname (ATM) and 27.14% were resistant to imipenem (IMP). In the case of the 129 Salmonella spp. isolates resistant to at least one tested antibiotic, 34.88% were resistant to CTX;41.08% to CAZ;35.65% to CTR, 92% to AMC, 39.53% to ATM and finally 47.28% were resistant to IMP. Our study revealed high prevalence of resistance in bacterial strains isolated from local chickens sold outdoors in Ouagadougou. These findings raise significant public health concerns, due to the possible transmission of these resistant strains to humans through the consumption of contaminated meat, thus complicating the treatment of bacterial infections.展开更多
基金financially supported in part by a cooperative agreement 6040–32000-080-000D from United States Department of Agriculture-Agricultural Research Service。
文摘Background This study investigated effects of different methionine(Met)supplementation levels in a reduced protein diet on growth performance,intestinal health,and different physiological parameters in broilers under Eimeria challenge.A total of 600 fourteen-day-old Cobb500 male broilers were challenged with E.maxima,E.tenella,and E.acervulina,and randomly allocated in a 2×5 factorial arrangement.Birds received normal protein diets(20%crude protein,NCP)or reduced protein diets(17%crude protein,LCP),containing 2.8,4.4,6.0,7.6,and 9.2 g/kg of Met.Results On 6 and 9 days post inoculation(DPI),increasing Met level linearly improved the growth performance(P<0.05).Total oocyst shedding linearly increased as Met level increased(P<0.05).Duodenal villus height(VH):crypt depth(CD)in the LCP groups were higher on 6 DPI(P<0.01)while lower on 9 DPI(P<0.05)compared to the NCP groups.Jejunal CD and duodenal VH:CD changed quadratically as Met level increased(P<0.05).On 6 DPI,liver glutathione(GSH)and glutathione disulfide(GSSG)linearly increased as Met level increased(P<0.05).On 9 DPI,GSSG quadratically increased,whereas GSH:GSSG quadratically decreased as Met levels increased(P<0.05).The expression of amino acid transporters linearly decreased as Met level increased(P<0.05).The expression of zonula occludens 2 and claudin-1 linearly increased on 6 DPI whereas decreased on 9 DPI as Met level increased(P<0.05).The expressions of cytokines were lower in the LCP groups than the NCP groups(P<0.05).Interaction effects were found for the expression of IL-10 and TNFαon 6 DPI(P<0.05),where it only changed quadratically in the NCP group as Met level increased.The expression of Met and folate metabolism genes were lower in the LCP groups than the NCP groups on 9 DPI(P<0.05).The expression of these genes linearly or quadratically decreased as Met level increased(P<0.05).Conclusion These results revealed the regulatory roles of Met in different physiological parameters including oxidative status,intestinal health,and nutrient metabolism in birds fed reduced protein diet and challenged with Eimeria.
文摘Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.
基金supported by the National Natural Science Foundation of China(31902298)the Shanxi Provincial Key Research and Development Program,China(2022ZDYF126)+2 种基金the Fund for Shanxi“1331 Project”,China(20211331-13)the Science and Technology Innovation Program of Shanxi Agricultural University,China(2017YJ10)the Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG001)。
文摘Evidence showed that N6-methyladenosine(m^(6)A)modification plays a pivotal role in influencing RNA fate and is strongly associated with cell growth and developmental processes in many species.However,no information regarding m^(6)A modification in Eimeria tenella is currently available.In the present study,we surveyed the transcriptome-wide prevalence of m^(6)A in sporulated oocysts and unsporulated oocysts of E.tenella.Methylated RNA immunoprecipitation sequencing(MeRIP-seq)analysis showed that m^(6)A modification was most abundant in the coding sequences,followed by stop codon.There were 3,903 hypermethylated and 3,178 hypomethylated mRNAs in sporulated oocysts compared with unsporulated oocysts.Further joint analysis suggested that m^(6)A modification of the majority of genes was positively correlated with mRNA expression.The mRNA relative expression and m^(6)A level of the selected genes were confirmed by quantitative reverse transcription PCR(RT-qPCR)and MeRIP-qPCR.GO and KEGG analysis indicated that differentially m^(6)A methylated genes(DMMGs)with significant differences in mRNA expression were closely related to processes such as regulation of gene expression,epigenetic,microtubule,autophagy-other and TOR signaling.Moreover,a total of 96 DMMGs without significant differences in mRNA expression showed significant differences at protein level.GO and pathway enrichment analysis of the 96 genes showed that RNA methylation may be involved in cell biosynthesis and metabolism of E.tenella.We firstly present a map of RNA m^(6)A modification in E.tenella,which provides significant insights into developmental biology of E.tenella.
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金The National Natural Science Foundation of China under contract No.42130403the Fundamental Research Funds for the Central Universities under contract No.202362003the National Key Research&Development Program of China under contract No.2017YFC1404300。
文摘Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation with nutrient regimes.However,the impact of key components of nutrients,especially dissolved organic nitrogen(DON),on the blooms of Karenia spp.is not clear.Quantitative research is still lacking.In this study,the cruise observations,field mesocosm-flask culture experiments,and a multinitrogen-tri-phytoplankton-detritus model(NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp.in the East China Sea.It has a synchronism rhythm of diatom-P.donghaienseKarenia spp.-diatom loop in the field culture experiment,which is consistent with the results of the cruise observation.The results showed that the processes of terrigenous DON(TeDON) and dissolved inorganic nitrogen(DIN:NO_(3)^(-)-N,NH_(4)^(+)-N) absorption promoted P.donghaiense to become the dominant algae in the community;whereas the processes of DON from P.donghaiense absorption promoted Karenia spp.to become the dominant algae in ambient DIN exhaustion.In addition,the three-dimensional fluorescence components of humus C,tyrosine and fulvic acid can indicate the processes of growth and extinction of P.donghaiense and Karenia spp.,respectively.This study infers that P.donghaiense and Karenia spp.regime shift mechanism associated with the nutrient regime in coastal waters,which provides a scientific basis for the environmental management of coastal eco system health.
文摘Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms of Fragaria spp. from January 2021 to February 2022. The plant was introduced in Cameroon in 2018. There are 13 varieties of Fragaria spp. currently cultivated. Among these 13 varieties, eleven are hybrids of Fragaria x ananassa (“Amiga”, “Amine”, “Camarosa”, “Chandler”, “Charlotte”, “Elsanta”, “Gariguette”, “Madame Moutot”, “Ostara”, “Ruby gem” and “San Andreas”), and two of the hybrids of Fragaria vesca (“Maestro” and “Mara des bois”). The cropping system, irrigation system, and type of fertilizers applied differ from one strawberry farm to another. Biofertilizers (such as mycorrhizal), inorganic and organic fertilizers are actually used to improve production. The potential annual production of strawberries from January 2021 to February 2022, estimated based on the survey data, was 21.216 tons for all growers. Among these eight production farms, the Lolodorf BIO Farm presents 6000 kg (six tons) of strawberries and 100,000 stolons (seedlings) produced, from seven varieties of Fragaria spp. cultivated, with 6 varieties which are hybrids variety Fragaria x ananassa (“Amiga”, “Amine”, “Chandler”, “Gariguette”, “Madame Moutot”, and “Ruby gem”), and one which is a hybrid of Fragaria vesca (“Mara des bois”). Certain diseases were also observed and recorded depending on the growing areas.
基金supported by grants from HEIP(Higher Education Improvement Project)Project and Royal University of Agriculture.
文摘The study was conducted to identify Aeromonas spp.and Vibrio spp.from fresh Pangasius fish(n=153)in Cambodia and test their antimicrobial susceptibility to antibiotics.The samples were collected from different wet markets of Phnom Penh city and Kampong Thom,and Siem Reap provinces.The bacteria were isolated by using selective medium and their AMR(Antimicrobial Resistance)profile was tested by API 20E technique,respectively.Susceptibility profile was determined for seven antibiotics commonly used.The Vibrio spp.(34.64%,n=53)was found to be higher than Aeromonas spp.(24.83%,n=38).Four Vibrio and four Aeromonas species were identified where V.parahaemolyticus(57%,n=30)was the highest,followed by V.cholerae(38%,n=20),V.fluvialis(3.8%,n=2)and V.aglinolyticus(1.9%,n=1),whereas A.hydrophila(47%,n=18)was the highest,followed by A.hydrophila/caviae(45%,n=17),A.sobria(5%,n=2),A.caviae(2.6%,n=1).All the species presented high multi-resistance to the tested antibiotics.The antibiotic susceptibility profile to ampicillin(74%-100%),ciprofloxacin(7%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(7%-100%),erythromycin(10%-100%)and colistin sulphate(33%-100%)was revealed resistance level in Aeromonas spp.whereas few species of Vibrio spp.resistant to ampicillin(43%-100%),ciprofloxacin(14%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(20%-100%),erythromycin(29%-100%),colistin sulphate(33%-100%)were also identified.The results revealed these Aeromonas spp.and Vibrio spp.are potentially reservoirs of antibiotic resistance genes.MDR(Multidrug Resistance)was widespread among the samples isolated.That is a high-risk source of contamination since those pathogens and antimicrobials are often used.Our findings highlight that the aquatic environment and fresh Pangasius fish act as reservoirs of AMR Aeromonas spp.and Vibrio spp.which underline the need for a judicious use of antimicrobials and timely surveillance of AMR in aquaculture.Overall,the findings of our study indicated the presence of A.hydrophila,A.hydrophila/caviae,A.caviae,A.sobria,V.parahaemolyticus,V.cholerae,V.alginolyticus and V.fluvialis and high MDR.This result will allow us to identify the potential risk over circulating isolates in animal health and public health and the spread through the food chain offering supports for appropriate sanitary actions.
文摘BACKGROUND Neuropathic pain(NP)is the primary symptom of various neurological condi-tions.Patients with NP often experience mood disorders,particularly depression and anxiety,that can severely affect their normal lives.Microglial cells are as-sociated with NP.Excessive inflammatory responses,especially the secretion of large amounts of pro-inflammatory cytokines,ultimately lead to neuroinflam-mation.Microglial pyroptosis is a newly discovered form of inflammatory cell death associated with immune responses and inflammation-related diseases of the central nervous system.METHODS Two models,an in vitro lipopolysaccharide(LPS)-stimulated microglial cell model and a selective nerve injury model using BTX-A and SPP1 knockdown treatments,were used.Key proteins in the pyroptosis signaling pathway,NLRP3-GSDMD,were assessed using western blotting,real-time quantitative polymerase chain reaction,and immunofluorescence.Inflammatory factors[interleukin(IL)-6,IL-1β,and tumor necrosis factor(TNF)-α]were assessed using enzyme-linked immuno-sorbent assay.We also evaluated microglial cell proliferation and apoptosis.Furthermore,we measured pain sensation by assessing the delayed hind paw withdrawal latency using thermal stimulation.RESULTS The expression levels of ACS and GSDMD-N and the mRNA expression of TNF-α,IL-6,and IL-1βwere enhanced in LPS-treated microglia.Furthermore,SPP1 expression was also induced in LPS-treated microglia.Notably,BTX-A inhibited SPP1 mRNA and protein expression in the LPS-treated microglia.Additionally,depletion of SPP1 or BTX-A inhibited cell viability and induced apoptosis in LPS-treated microglia,whereas co-treatment with BTX-A enhanced the effect of SPP1 short hairpin(sh)RNA in LPS-treated microglia.Finally,SPP1 depletion or BTX-A treatment reduced the levels of GSDMD-N,NLPRP3,and ASC and suppressed the production of inflammatory factors.CONCLUSION Notably,BTX-A therapy and SPP1 shRNA enhance microglial proliferation and apoptosis and inhibit microglial death.It improves pain perception and inhibits microglial activation in rats with selective nerve pain.
文摘Resistant bacteria can be transmitted to humans through feces or contaminated meat from local chickens. Bacterial strains were isolated from the intestinal contents of 400 local chicken samples from various sales sites. These strains were then characterized using bacteriological and biochemical methods to identify resistant strains. In a study conducted in Ouagadougou, we systematically collected chicken fecal samples from 20 locations across the city, followed by isolation and identification of Salmonella spp. using specific enrichment and culture methods, as well as Escherichia coli. Bacterial strains were characterized using antibiotic resistance profiles were determined through agar diffusion tests, revealing sensitivity or resistance to a range of antibiotics based on established scientific criteria. The results showed that out of the 400 samples collected, 81.25% and 63.5% were contaminated by Escherichia coli and Salmonella spp., respectively. Among these, 86.15% of identified Escherichia coli and 50.78% of Salmonella spp. displayed resistance to at least one tested antibiotic. Among 280 Escherichia coli isolates identified resistant to at least one antibiotic, 31.07% were resistant to cefotaxime (CTX), 20.35% to ceftazidime (CAZ), 21.07% to ceftriaxone (CTR), 75% to amoxicillin clavulanic acid (AMC), 23.57% aztreoname (ATM) and 27.14% were resistant to imipenem (IMP). In the case of the 129 Salmonella spp. isolates resistant to at least one tested antibiotic, 34.88% were resistant to CTX;41.08% to CAZ;35.65% to CTR, 92% to AMC, 39.53% to ATM and finally 47.28% were resistant to IMP. Our study revealed high prevalence of resistance in bacterial strains isolated from local chickens sold outdoors in Ouagadougou. These findings raise significant public health concerns, due to the possible transmission of these resistant strains to humans through the consumption of contaminated meat, thus complicating the treatment of bacterial infections.