The Bach equations are a version of higher-order gravitational field equations, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein gravitational field equations are treated here as a perturbation of E...The Bach equations are a version of higher-order gravitational field equations, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein gravitational field equations are treated here as a perturbation of Einstein’s gravity. An approximate inversion formula is derived which admits a comparison of the two field theories. An application to these theories is given where the gravitational Lagrangian is expressed linearly in terms of R, R<sup>2</sup>, |Ric|<sup>2</sup>, where the Ricci tensor Ric = R<sub>αβ</sub>dx<sup>α</sup>dx<sup>β</sup> is inserted in some formulas which are of geometrical or physical importance, such as;Raychaudhuri equation and Tolman’s formula.展开更多
In this paper some properties of a symmetric tensor field T(X,Y) = g(A(X), Y) on a Riemannian manifold (M, g) without boundary which satisfies the S quasi-Einstein equation Rij-S/2gij=Tij+bξiξj are given. ...In this paper some properties of a symmetric tensor field T(X,Y) = g(A(X), Y) on a Riemannian manifold (M, g) without boundary which satisfies the S quasi-Einstein equation Rij-S/2gij=Tij+bξiξj are given. The necessary and sufficient conditions for this tensor to satisfy the quasi-Einstein equation are also obtained.展开更多
In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foundational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we...In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foundational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we do not know their solutions up to now. Based on the coordinate transformations of the Kerr and the Kerr-Newman solutions of the Einstein’s equation of gravity field with axial symmetry, the gravity fields of static thin loop and double spheres are obtained. The results indicate that, no matter how much the mass and density are, there are singularities at the central point of thin loop and the contact point of double spheres. What is more, the singularities are completely exposed in vacuum. Space near the surfaces of thin loop and spheres are highly curved, although the gravity fields are very weak. These results are inconsistent with practical experience and completely impossible. By reasonable analogy, black holes with singularity in cosmology and astrophysics are something illusive. Caused by the mathematical description of curved space-time, they do not exist in real world actually. If there are black holes in the universe, they can only be the types of the Newtonian black holes without singularities, rather than the Einstein’s singularity black holes. In order to escape the puzzle of singularity thoroughly, the description of gravity should return to the traditional form of dynamics in flat space. The renormalization of gravity and the unified description of four basic interactions may be possible only based on the frame of flat space-time. Otherwise, theses problems can not be solved forever. Physicists should have a clear understanding about this problem.展开更多
A general-relativistic model is formulated for hypothetical ultra-compact astrophysical objects composed of fluid infused with charges carrying a generalized massless Maxwell-Proca field. The chosen interior metric ha...A general-relativistic model is formulated for hypothetical ultra-compact astrophysical objects composed of fluid infused with charges carrying a generalized massless Maxwell-Proca field. The chosen interior metric has the algebraic property that;the fluid consequently possesses a negative pressure which halts gravitational collapse and establishes hydrostatic equilibrium. For an object containing a global distribution of non-interacting Maxwell-Proca charges, it is shown that physical considerations define the relationship between the charge density and the metric function uniquely, corroborating an earlier finding (for an electrostatic distribution of charge) that the interior field must increase with radial distance and the exterior field necessarily follows an inverse-square law. For the case of a charged fluid envelope surrounding a core of uncharged fluid, numerous solutions are possible. Assuming the interior field to vary as rn and requiring its strength to increase with radial distance while the charge density decreases, the range of values for n is found to be 0 n ≤ 1 (where n is not necessarily an integer) with n = 1 denoting the special case of a continuous distribution of charge. For both continuous and stratified charge distributions, the exterior field is found to decrease as 1/r2?regardless of the interior field’s dependence on r.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations, [1]-[3]. Mach’s principle is ...The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations, [1]-[3]. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 - 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. We give a physical description of the MET device and apparatus for measuring thrusts. Next we explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). We show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.展开更多
文摘The Bach equations are a version of higher-order gravitational field equations, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein gravitational field equations are treated here as a perturbation of Einstein’s gravity. An approximate inversion formula is derived which admits a comparison of the two field theories. An application to these theories is given where the gravitational Lagrangian is expressed linearly in terms of R, R<sup>2</sup>, |Ric|<sup>2</sup>, where the Ricci tensor Ric = R<sub>αβ</sub>dx<sup>α</sup>dx<sup>β</sup> is inserted in some formulas which are of geometrical or physical importance, such as;Raychaudhuri equation and Tolman’s formula.
基金The Grant-in-Aid for Scientific Research from Nanjing University of ScienceTechnology (AB41409) the NNSF (19771048) of China partly.
文摘In this paper some properties of a symmetric tensor field T(X,Y) = g(A(X), Y) on a Riemannian manifold (M, g) without boundary which satisfies the S quasi-Einstein equation Rij-S/2gij=Tij+bξiξj are given. The necessary and sufficient conditions for this tensor to satisfy the quasi-Einstein equation are also obtained.
文摘In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foundational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we do not know their solutions up to now. Based on the coordinate transformations of the Kerr and the Kerr-Newman solutions of the Einstein’s equation of gravity field with axial symmetry, the gravity fields of static thin loop and double spheres are obtained. The results indicate that, no matter how much the mass and density are, there are singularities at the central point of thin loop and the contact point of double spheres. What is more, the singularities are completely exposed in vacuum. Space near the surfaces of thin loop and spheres are highly curved, although the gravity fields are very weak. These results are inconsistent with practical experience and completely impossible. By reasonable analogy, black holes with singularity in cosmology and astrophysics are something illusive. Caused by the mathematical description of curved space-time, they do not exist in real world actually. If there are black holes in the universe, they can only be the types of the Newtonian black holes without singularities, rather than the Einstein’s singularity black holes. In order to escape the puzzle of singularity thoroughly, the description of gravity should return to the traditional form of dynamics in flat space. The renormalization of gravity and the unified description of four basic interactions may be possible only based on the frame of flat space-time. Otherwise, theses problems can not be solved forever. Physicists should have a clear understanding about this problem.
文摘A general-relativistic model is formulated for hypothetical ultra-compact astrophysical objects composed of fluid infused with charges carrying a generalized massless Maxwell-Proca field. The chosen interior metric has the algebraic property that;the fluid consequently possesses a negative pressure which halts gravitational collapse and establishes hydrostatic equilibrium. For an object containing a global distribution of non-interacting Maxwell-Proca charges, it is shown that physical considerations define the relationship between the charge density and the metric function uniquely, corroborating an earlier finding (for an electrostatic distribution of charge) that the interior field must increase with radial distance and the exterior field necessarily follows an inverse-square law. For the case of a charged fluid envelope surrounding a core of uncharged fluid, numerous solutions are possible. Assuming the interior field to vary as rn and requiring its strength to increase with radial distance while the charge density decreases, the range of values for n is found to be 0 n ≤ 1 (where n is not necessarily an integer) with n = 1 denoting the special case of a continuous distribution of charge. For both continuous and stratified charge distributions, the exterior field is found to decrease as 1/r2?regardless of the interior field’s dependence on r.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
文摘The Mach Effect Thruster (MET) is a propellant—less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass—energy fluctuations, [1]-[3]. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 - 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. We give a physical description of the MET device and apparatus for measuring thrusts. Next we explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). We show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.