Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used ...Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.展开更多
The viscous polytropic gas model as one model of dark energy is hot-spot and keystone to the modern cosmology. We study the evolution of the viscous polytropic dark energy model interacting with the dark matter in the...The viscous polytropic gas model as one model of dark energy is hot-spot and keystone to the modern cosmology. We study the evolution of the viscous polytropic dark energy model interacting with the dark matter in the Einstein cosmology. Setting the autonomous dynamical system for the interacting viscous polytropic dark energy with dark matter and using the phase space analysis method to investigate the dynamical evolution and its critical stability, we find that the viscosity property of the dark energy creates a benefit for the stable critical dynamical evolution of the interaction model between dark matter and dark energy in the flat Friedmann-Robertson-Walker universe and the viscosity of dark energy will soften the coincidence problem just like the interacting dark energy model.展开更多
This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal...This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal molar heat capacity changes to the Dulong-Petit equation Cv=3R. Thereby this equation can explain why crystal molar heat capacity equals about 3R not only at low temperatures but also at normal temperatures for many kinds of metals. It can be calculated that the nonlinear interaction among atoms contributes to the molar heat capacity using the coefficient of expansion β and the Grüneisen constant γ. The result is that the relative error between the theoretical and the experimental value of the molar heat capacity is reduced greatly for many kinds of metals, especially for metals of IA. The relative error can be cut by about 17%.展开更多
We theoretically study the transition dynamics of a two-component Bose-Einstein condensate driven by a train of weak δ-shaped laser pulses. We find that the atomic system can experience peculiar resonant transition e...We theoretically study the transition dynamics of a two-component Bose-Einstein condensate driven by a train of weak δ-shaped laser pulses. We find that the atomic system can experience peculiar resonant transition even under weak optical excitations and derive the resonance condition by the perturbation method. Employing this mechanism, we propose a scheme to obtain an atomic ensemble with desired odd/even atom number and also a scheme to prepare a nonclassical state of the many-body system with fixed atom number.展开更多
The present article is a continuation of a recently published paper [1] in which we have modeled the composition and structure of neutrons and other hadrons using the Rotating Lepton Model (RLM) which is a Bohr type m...The present article is a continuation of a recently published paper [1] in which we have modeled the composition and structure of neutrons and other hadrons using the Rotating Lepton Model (RLM) which is a Bohr type model employing the relativistic gravitational attraction between three ultrafast rotating neutrinos as the centripetal force. The RLM accounts for special relativity and also for the De Broglie equation of quantum mechanics. In this way this force was shown to reach the value of the Strong Force while the values of the masses of the rotating relativistic neutrinos reach those of quarks. Masses computed for twelve hadrons and bosons are in very close (~2%) agreement with the experimental values. Here we use the same RLM approach to describe the composition and structure and to compute the masses of Pions and Kaons which are important zero spin mesons. Contrary to hadrons and bosons which have been found via the RLM to comprise the heaviest neutrino eigenmass m<sub>3</sub>, in the case of mesons the intermediate neutrino mass eigenstate m<sub>2</sub> is found to play the dominant role. This can explain why the lowest masses of mesons are generally smaller than those of hadrons and bosons. Thus in the case of Pions it is found that they comprise three rotating m<sub>2</sub> mass eigenstate neutrinos and the computed mass of 136.6 MeV/c<sup>2</sup> is in good agreement with the experimental value of 134.977 MeV/c<sup>2</sup>. The Kaon structure is found to consist of six m<sub>2</sub> mass eigenstate neutrinos arranged in two parallel pion-type rotating triads. The computed Kaon mass differs less that 2% from the experimental K<sup>±</sup> and K°values of 493.677 MeV/c<sup>2</sup> and 497.648 MeV/c<sup>2</sup> respectively. This, in conjunction with the experimentally observed decay products of the Kaons, provides strong support for the proposed K structure.展开更多
We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interaction among the spinning particles prevailing in spatially homogeneous, but anisotropically cosmological models of Bianchi...We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interaction among the spinning particles prevailing in spatially homogeneous, but anisotropically cosmological models of Bianchi type V based on Einstein Cartan theory. We analyze the field equations in three different equations of states specified by p =(1/3)ρ, p =ρ and p =0. The analytical solutions found are non singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe. We have also deduced that the minimum particle numbers for the radiation ( p =(1/3)ρ ) and matter ( p =0) epochs are 10 88 and 10 108 respectively, the minimum particle number for the state p =ρ is 10 96 , leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti particles under torsion and strong gravitational field in the early Universe.展开更多
The Standard Model of particle physics requires nine lepton and quark masses as inputs, but does not incorporate neutrino masses required by neutrino oscillation observations. This analysis addresses these problems, e...The Standard Model of particle physics requires nine lepton and quark masses as inputs, but does not incorporate neutrino masses required by neutrino oscillation observations. This analysis addresses these problems, explaining Standard Model particle masses by describing fundamental particles as solutions of Einstein’s equations, with radii 1/4 their Compton wavelength and half of any charge on rotating particles located on the surface at each end of the axis of rotation. The analysis relates quark and lepton masses to electron charge and mass, and identifies neutrino masses consistent with neutrino oscillation observations.展开更多
Exact self-similar solutions to Einstein’s field equations for the Kantowski-Sachs space-time are determined. The self-similarity property is applied to determine the functional form of the unknown functions that def...Exact self-similar solutions to Einstein’s field equations for the Kantowski-Sachs space-time are determined. The self-similarity property is applied to determine the functional form of the unknown functions that define the gravitational model and to reduce the order of the field equations. The consequences of matter, described by the energy-momentum tensor, are investigated in the case of a perfect fluid. Some physical features and kinematical properties of the obtained model are studied.展开更多
The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitatio...The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitation, it describes only one aspect of the universe. In extension of general relativity, Einstein had proposed a symmetrical and complementary approach of physics. In his program, he privileged a relativist field based on representations for physical phenomena, before a precise mathematical description. It allows completing and unifying the universe description, like both eyes for relief vision, and both ears for stereophonic audition. We propose to show it with many simple examples.展开更多
文摘Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.
基金Supported by the National Natural Science Foundation of China under Grant No 10873004the State Key Development Program for Basic Research Program of China under Grant No 2010CB832803the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT0964
文摘The viscous polytropic gas model as one model of dark energy is hot-spot and keystone to the modern cosmology. We study the evolution of the viscous polytropic dark energy model interacting with the dark matter in the Einstein cosmology. Setting the autonomous dynamical system for the interacting viscous polytropic dark energy with dark matter and using the phase space analysis method to investigate the dynamical evolution and its critical stability, we find that the viscosity property of the dark energy creates a benefit for the stable critical dynamical evolution of the interaction model between dark matter and dark energy in the flat Friedmann-Robertson-Walker universe and the viscosity of dark energy will soften the coincidence problem just like the interacting dark energy model.
文摘This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal molar heat capacity changes to the Dulong-Petit equation Cv=3R. Thereby this equation can explain why crystal molar heat capacity equals about 3R not only at low temperatures but also at normal temperatures for many kinds of metals. It can be calculated that the nonlinear interaction among atoms contributes to the molar heat capacity using the coefficient of expansion β and the Grüneisen constant γ. The result is that the relative error between the theoretical and the experimental value of the molar heat capacity is reduced greatly for many kinds of metals, especially for metals of IA. The relative error can be cut by about 17%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301504)the National Natural Science Foundation of China(Grant Nos.61835013 and 11774362)
文摘We theoretically study the transition dynamics of a two-component Bose-Einstein condensate driven by a train of weak δ-shaped laser pulses. We find that the atomic system can experience peculiar resonant transition even under weak optical excitations and derive the resonance condition by the perturbation method. Employing this mechanism, we propose a scheme to obtain an atomic ensemble with desired odd/even atom number and also a scheme to prepare a nonclassical state of the many-body system with fixed atom number.
文摘The present article is a continuation of a recently published paper [1] in which we have modeled the composition and structure of neutrons and other hadrons using the Rotating Lepton Model (RLM) which is a Bohr type model employing the relativistic gravitational attraction between three ultrafast rotating neutrinos as the centripetal force. The RLM accounts for special relativity and also for the De Broglie equation of quantum mechanics. In this way this force was shown to reach the value of the Strong Force while the values of the masses of the rotating relativistic neutrinos reach those of quarks. Masses computed for twelve hadrons and bosons are in very close (~2%) agreement with the experimental values. Here we use the same RLM approach to describe the composition and structure and to compute the masses of Pions and Kaons which are important zero spin mesons. Contrary to hadrons and bosons which have been found via the RLM to comprise the heaviest neutrino eigenmass m<sub>3</sub>, in the case of mesons the intermediate neutrino mass eigenstate m<sub>2</sub> is found to play the dominant role. This can explain why the lowest masses of mesons are generally smaller than those of hadrons and bosons. Thus in the case of Pions it is found that they comprise three rotating m<sub>2</sub> mass eigenstate neutrinos and the computed mass of 136.6 MeV/c<sup>2</sup> is in good agreement with the experimental value of 134.977 MeV/c<sup>2</sup>. The Kaon structure is found to consist of six m<sub>2</sub> mass eigenstate neutrinos arranged in two parallel pion-type rotating triads. The computed Kaon mass differs less that 2% from the experimental K<sup>±</sup> and K°values of 493.677 MeV/c<sup>2</sup> and 497.648 MeV/c<sup>2</sup> respectively. This, in conjunction with the experimentally observed decay products of the Kaons, provides strong support for the proposed K structure.
文摘We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interaction among the spinning particles prevailing in spatially homogeneous, but anisotropically cosmological models of Bianchi type V based on Einstein Cartan theory. We analyze the field equations in three different equations of states specified by p =(1/3)ρ, p =ρ and p =0. The analytical solutions found are non singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe. We have also deduced that the minimum particle numbers for the radiation ( p =(1/3)ρ ) and matter ( p =0) epochs are 10 88 and 10 108 respectively, the minimum particle number for the state p =ρ is 10 96 , leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti particles under torsion and strong gravitational field in the early Universe.
文摘The Standard Model of particle physics requires nine lepton and quark masses as inputs, but does not incorporate neutrino masses required by neutrino oscillation observations. This analysis addresses these problems, explaining Standard Model particle masses by describing fundamental particles as solutions of Einstein’s equations, with radii 1/4 their Compton wavelength and half of any charge on rotating particles located on the surface at each end of the axis of rotation. The analysis relates quark and lepton masses to electron charge and mass, and identifies neutrino masses consistent with neutrino oscillation observations.
文摘Exact self-similar solutions to Einstein’s field equations for the Kantowski-Sachs space-time are determined. The self-similarity property is applied to determine the functional form of the unknown functions that define the gravitational model and to reduce the order of the field equations. The consequences of matter, described by the energy-momentum tensor, are investigated in the case of a perfect fluid. Some physical features and kinematical properties of the obtained model are studied.
文摘The standard model of particle physics forms a consistent system for universe description. After following quantum mechanics, it derives particles from relativistic quantum fields. Since it does not include gravitation, it describes only one aspect of the universe. In extension of general relativity, Einstein had proposed a symmetrical and complementary approach of physics. In his program, he privileged a relativist field based on representations for physical phenomena, before a precise mathematical description. It allows completing and unifying the universe description, like both eyes for relief vision, and both ears for stereophonic audition. We propose to show it with many simple examples.