Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used ...Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.展开更多
Gravitational lensing has become a powerful research tool for exploring the distribution of matter and energy in the universe nowadays, as glare phenomena around the Sun and massive galaxies are indeed observed on the...Gravitational lensing has become a powerful research tool for exploring the distribution of matter and energy in the universe nowadays, as glare phenomena around the Sun and massive galaxies are indeed observed on the Earth. What is the physical nature of gravitational lensing effect? Both Newton’s law of gravitation and Einstein’s theory of relativity are difficult to physically explain these glare phenomena. This study points out that the observed glare around the Sun and large galaxies is a result or product of the orthogonal interaction of high-energy particles emitted from different star light sources. It shows a new physical state associated with abnormal high mass-energy density.展开更多
We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists betw...We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.展开更多
In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in th...In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron.展开更多
One day when Einstein was 1(?) his way home, a young man stopped him and wished 2(?) a word with him. Einstein granted his request. The young man asked, "How, Mr Einstein, can you 3(?) your fame? " The scien...One day when Einstein was 1(?) his way home, a young man stopped him and wished 2(?) a word with him. Einstein granted his request. The young man asked, "How, Mr Einstein, can you 3(?) your fame? " The scientist said, "It seems that you have been thinking of 4(?) famous every day." The young man nodded.展开更多
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed an...In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.展开更多
NEWTON’s laws of motion predicted that light would travel faster from a moving source—it doesn’t.Einstein was convinced that unruly electrons had no place in an orderly,understandable universe.Both assumed that hum...NEWTON’s laws of motion predicted that light would travel faster from a moving source—it doesn’t.Einstein was convinced that unruly electrons had no place in an orderly,understandable universe.Both assumed that human knowledge could be perfected,mathematically,and that a coherent scientific account of the world we find ourselves in,not only exists,but is available and open to dedicated human enquiry.This paper argues that Hume,Kant and recent work on Hubble’s Constant render this idealistic position untenable.The remedy proposed is not to tighten scientific definitions ever further,but to reposition Science so as to prioritise the biosphere.This entails placing the process of living organisms centre stage,since they defy the Second Law of Thermodynamics,thereby reducing Uncertainty for all—an approach best exemplified in clinical medicine,where despite unbridgeable gaps in medical knowledge,healing can and does take place.Using Quaker insights developed in the 1650s,a non-theological pathway is offered which emphasises human creativity and social cohesion.Unhappily psychiatry today,under the guise of being 100%scientific in the Einstein way,discards three counts of millennial medical wisdom,with catastrophic consequences,as shown by scientifically valid data.A healthier approach to mental and social health,emphasising trust and consent,is described.展开更多
This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented i...This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann's equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles presented in monatomic argon gas are coupled in a self-consistent way with Poisson's equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.展开更多
The present note is concerned with two connected and highly important fundamental questions of physics and cosmology, namely if E8E8 Lie symmetry group describes the universe and where cosmic dark energy comes from. F...The present note is concerned with two connected and highly important fundamental questions of physics and cosmology, namely if E8E8 Lie symmetry group describes the universe and where cosmic dark energy comes from. Furthermore, we reason following Wheeler, Hartle and Hawking that since the boundary of a boundary is an empty set which models the quantum wave of the cosmos, then it follows that dark energy is a fundamental physical phenomenon associated with the boundary of the holographic boundary. This leads directly to a clopen universe which is its own Penrose tiling-like multiverse with energy density in full agreement with COBE, WMAP and Type 1a supernova cosmic measurements.展开更多
Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present ...Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present in the laws of thermodynamics. Coupling this observation with the conceptual difficulties often felt in learning thermodynamics leads to the idea that both situations may have the same cause. On the basis of these clues, this paper is intended to provide complementary arguments to a hypothesis already presented. It consists of showing the existence of an imperfect compatibility between the conventional formulations of the first and second laws of thermodynamics and suggesting the need of the mass-energy relation to solving the problem.展开更多
It is demonstrated that the use of Kolmogorov’s probability theory to describe results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm) experiments requires extreme care when different subsets of measur...It is demonstrated that the use of Kolmogorov’s probability theory to describe results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm) experiments requires extreme care when different subsets of measurement outcomes are considered. J. S. Bell and his followers have committed critical inaccuracies related to spin-gauge and probability measures of such subsets, because they use exclusively a single probability space for all data sets and sub-sets of data. It is also shown that Bell and followers use far too stringent epistemological requirements for the consequences of space-like separation. Their requirements reach way beyond Einstein’s separation principle and cannot be met by the major existing physical theories including relativity and even classical mechanics. For example, the independent free will does not empower the experimenters to choose multiple independent spin-gauges in the two EPRB wings. It is demonstrated that the suggestion of instantaneous influences at a distance (supposedly “derived” from experiments with entangled quantum entities) is a consequence of said inaccuracies and takes back rank as soon as the Kolmogorov probability measures are related to a consistent global spin-gauge and permitted to be different for different data subsets: Using statistical interpretations and different probability spaces for certain subsets of outcomes instead of probability amplitudes related to single quantum entities, permits physical explanations without a violation of Einstein’s separation principle.展开更多
In this paper we investigate the time-machine problem in the electromagnetic field. Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for ele...In this paper we investigate the time-machine problem in the electromagnetic field. Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for electromagnetic field, and construct the time-machine solutions, which solve the time machine problem in electromagnetic field.展开更多
This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal...This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal molar heat capacity changes to the Dulong-Petit equation Cv=3R. Thereby this equation can explain why crystal molar heat capacity equals about 3R not only at low temperatures but also at normal temperatures for many kinds of metals. It can be calculated that the nonlinear interaction among atoms contributes to the molar heat capacity using the coefficient of expansion β and the Grüneisen constant γ. The result is that the relative error between the theoretical and the experimental value of the molar heat capacity is reduced greatly for many kinds of metals, especially for metals of IA. The relative error can be cut by about 17%.展开更多
We retrieve three mysterious sentences Albert Einstein wrote in the early years of his wondrous scientific career. We examine their implications and we suggest that they provide a surprising new basis for Quantum Phys...We retrieve three mysterious sentences Albert Einstein wrote in the early years of his wondrous scientific career. We examine their implications and we suggest that they provide a surprising new basis for Quantum Physics as well as some enlightenment concerning the whereabouts of Dark energy.展开更多
Work on quantum entanglement is currently emphasizing the nonlocal nature of theories that attempt to explain spatially separated Einstein-Podolsky-Rosen (EPR) correlation experiments. It is frequently claimed that no...Work on quantum entanglement is currently emphasizing the nonlocal nature of theories that attempt to explain spatially separated Einstein-Podolsky-Rosen (EPR) correlation experiments. It is frequently claimed that nonlocal instantaneous influences, or equivalently a breakdown of Einstein’s separation principle, are a signature property of (quantum) entanglement. This paper presents a categorization of the various forms of nonlocality in physical theories. It is shown that, even for Einstein’s theory of relativity, correlations of spatially separated measurements cannot be explained without the involvement of some nonlocal or global knowledge and facts. Instantaneous Influences at a distance are, however, in a special category of nonlocality and, as is well known, Einstein called them spooky. Following a separation of nonlocalities into four distinctly different categories 0, 1, 2, 3, with number 3 corresponding to theories containing instantaneous influences at a distance, I show that any theory of EPR experiments must be at least in category 1 or 2 and does not need to be in category 3. In particular, the Bell theorem, valid for category 0 theories, may be violated for categories 1 and 2 and does not require category 3 theories. Category 0 enforces Bell’s theorem. However, it does not apply to relativistic theories of space like separated measurements.展开更多
It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lea...It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lead to a delta function energymomentum tensor for a point mass source for the Schwarzschild field that has vanishing self-stress, and whose integral therefore transforms properly under a Lorentz transformation, as though the particle is in the flat space-time of special relativity (SR). These findings were later extended to n spatial dimensions. Consistent with this SR-like result for the source tensor, Nordstrom and independently, Schrodinger, found for three spatial dimensions that the Einstein gravitational energy-momentum pseudo-tensor vanished in proper quasi-rectangular coordinates. The present work shows that this vanishing holds for the pseudo-tensor when extended to n spatial dimensions. Two additional consequences of this work are: 1) the dependency of the Einstein gravitational coupling constant κ on spatial dimensionality employed earlier is further justified;2) the Tolman expression for the mass of a static, isolated system is generalized to take into account the dimensionality of space for n ≥ 3.展开更多
When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit ...When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit calculations as to a space time length factor Without the drop off of the vacuum energy as given by is at least the value of . We review the work by Ng as to quantum foam as to how that affects a general expression as to energy when , with determined at least approximately by arguments he presented in 2008 in the Dark side of the universe conference. Well before certain effects make themselves apparent, in ways which are illustrated in the manuscript. Having at a point singularity would remove expansion by the scale factor, so that the extreme version of Stoica’s treatment in an isolated 4-dimensional universe would be no expansion at all.展开更多
文摘Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.
文摘Gravitational lensing has become a powerful research tool for exploring the distribution of matter and energy in the universe nowadays, as glare phenomena around the Sun and massive galaxies are indeed observed on the Earth. What is the physical nature of gravitational lensing effect? Both Newton’s law of gravitation and Einstein’s theory of relativity are difficult to physically explain these glare phenomena. This study points out that the observed glare around the Sun and large galaxies is a result or product of the orthogonal interaction of high-energy particles emitted from different star light sources. It shows a new physical state associated with abnormal high mass-energy density.
文摘We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.
文摘In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron.
文摘One day when Einstein was 1(?) his way home, a young man stopped him and wished 2(?) a word with him. Einstein granted his request. The young man asked, "How, Mr Einstein, can you 3(?) your fame? " The scientist said, "It seems that you have been thinking of 4(?) famous every day." The young man nodded.
基金The project supported in part by the National Natural Science Foundation of China under Grant No. 10671124 and the Program for New Century Excellent Talents in University of China under Grant No. NCET-05-0390 Acknowledgments The author would like to thank the Center of Mathematical Sciences at Zhejiang University for the great support and hospitality and the referee for pertinent comments and valuable suggestions.
文摘In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.
文摘NEWTON’s laws of motion predicted that light would travel faster from a moving source—it doesn’t.Einstein was convinced that unruly electrons had no place in an orderly,understandable universe.Both assumed that human knowledge could be perfected,mathematically,and that a coherent scientific account of the world we find ourselves in,not only exists,but is available and open to dedicated human enquiry.This paper argues that Hume,Kant and recent work on Hubble’s Constant render this idealistic position untenable.The remedy proposed is not to tighten scientific definitions ever further,but to reposition Science so as to prioritise the biosphere.This entails placing the process of living organisms centre stage,since they defy the Second Law of Thermodynamics,thereby reducing Uncertainty for all—an approach best exemplified in clinical medicine,where despite unbridgeable gaps in medical knowledge,healing can and does take place.Using Quaker insights developed in the 1650s,a non-theological pathway is offered which emphasises human creativity and social cohesion.Unhappily psychiatry today,under the guise of being 100%scientific in the Einstein way,discards three counts of millennial medical wisdom,with catastrophic consequences,as shown by scientifically valid data.A healthier approach to mental and social health,emphasising trust and consent,is described.
文摘This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann's equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles presented in monatomic argon gas are coupled in a self-consistent way with Poisson's equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.
文摘The present note is concerned with two connected and highly important fundamental questions of physics and cosmology, namely if E8E8 Lie symmetry group describes the universe and where cosmic dark energy comes from. Furthermore, we reason following Wheeler, Hartle and Hawking that since the boundary of a boundary is an empty set which models the quantum wave of the cosmos, then it follows that dark energy is a fundamental physical phenomenon associated with the boundary of the holographic boundary. This leads directly to a clopen universe which is its own Penrose tiling-like multiverse with energy density in full agreement with COBE, WMAP and Type 1a supernova cosmic measurements.
文摘Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present in the laws of thermodynamics. Coupling this observation with the conceptual difficulties often felt in learning thermodynamics leads to the idea that both situations may have the same cause. On the basis of these clues, this paper is intended to provide complementary arguments to a hypothesis already presented. It consists of showing the existence of an imperfect compatibility between the conventional formulations of the first and second laws of thermodynamics and suggesting the need of the mass-energy relation to solving the problem.
文摘It is demonstrated that the use of Kolmogorov’s probability theory to describe results of quantum probability for EPRB (Einstein-Podolsky-Rosen-Bohm) experiments requires extreme care when different subsets of measurement outcomes are considered. J. S. Bell and his followers have committed critical inaccuracies related to spin-gauge and probability measures of such subsets, because they use exclusively a single probability space for all data sets and sub-sets of data. It is also shown that Bell and followers use far too stringent epistemological requirements for the consequences of space-like separation. Their requirements reach way beyond Einstein’s separation principle and cannot be met by the major existing physical theories including relativity and even classical mechanics. For example, the independent free will does not empower the experimenters to choose multiple independent spin-gauges in the two EPRB wings. It is demonstrated that the suggestion of instantaneous influences at a distance (supposedly “derived” from experiments with entangled quantum entities) is a consequence of said inaccuracies and takes back rank as soon as the Kolmogorov probability measures are related to a consistent global spin-gauge and permitted to be different for different data subsets: Using statistical interpretations and different probability spaces for certain subsets of outcomes instead of probability amplitudes related to single quantum entities, permits physical explanations without a violation of Einstein’s separation principle.
基金Supported by the Start-up Fund of Fuzhou University under Grant No.0460022346
文摘In this paper we investigate the time-machine problem in the electromagnetic field. Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for electromagnetic field, and construct the time-machine solutions, which solve the time machine problem in electromagnetic field.
文摘This paper is based on Einstein’s supposition about crystal lattice vibration, which states that when Einstein’s temperature ΘE is not less than the crystal temperature T but less than 2T, the expression of crystal molar heat capacity changes to the Dulong-Petit equation Cv=3R. Thereby this equation can explain why crystal molar heat capacity equals about 3R not only at low temperatures but also at normal temperatures for many kinds of metals. It can be calculated that the nonlinear interaction among atoms contributes to the molar heat capacity using the coefficient of expansion β and the Grüneisen constant γ. The result is that the relative error between the theoretical and the experimental value of the molar heat capacity is reduced greatly for many kinds of metals, especially for metals of IA. The relative error can be cut by about 17%.
文摘We retrieve three mysterious sentences Albert Einstein wrote in the early years of his wondrous scientific career. We examine their implications and we suggest that they provide a surprising new basis for Quantum Physics as well as some enlightenment concerning the whereabouts of Dark energy.
文摘Work on quantum entanglement is currently emphasizing the nonlocal nature of theories that attempt to explain spatially separated Einstein-Podolsky-Rosen (EPR) correlation experiments. It is frequently claimed that nonlocal instantaneous influences, or equivalently a breakdown of Einstein’s separation principle, are a signature property of (quantum) entanglement. This paper presents a categorization of the various forms of nonlocality in physical theories. It is shown that, even for Einstein’s theory of relativity, correlations of spatially separated measurements cannot be explained without the involvement of some nonlocal or global knowledge and facts. Instantaneous Influences at a distance are, however, in a special category of nonlocality and, as is well known, Einstein called them spooky. Following a separation of nonlocalities into four distinctly different categories 0, 1, 2, 3, with number 3 corresponding to theories containing instantaneous influences at a distance, I show that any theory of EPR experiments must be at least in category 1 or 2 and does not need to be in category 3. In particular, the Bell theorem, valid for category 0 theories, may be violated for categories 1 and 2 and does not require category 3 theories. Category 0 enforces Bell’s theorem. However, it does not apply to relativistic theories of space like separated measurements.
文摘It was noted earlier that the general relativity field equations for static systems with spherical symmetry can be put into a linear form when the source energy density equals radial stress. These linear equations lead to a delta function energymomentum tensor for a point mass source for the Schwarzschild field that has vanishing self-stress, and whose integral therefore transforms properly under a Lorentz transformation, as though the particle is in the flat space-time of special relativity (SR). These findings were later extended to n spatial dimensions. Consistent with this SR-like result for the source tensor, Nordstrom and independently, Schrodinger, found for three spatial dimensions that the Einstein gravitational energy-momentum pseudo-tensor vanished in proper quasi-rectangular coordinates. The present work shows that this vanishing holds for the pseudo-tensor when extended to n spatial dimensions. Two additional consequences of this work are: 1) the dependency of the Einstein gravitational coupling constant κ on spatial dimensionality employed earlier is further justified;2) the Tolman expression for the mass of a static, isolated system is generalized to take into account the dimensionality of space for n ≥ 3.
文摘When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit calculations as to a space time length factor Without the drop off of the vacuum energy as given by is at least the value of . We review the work by Ng as to quantum foam as to how that affects a general expression as to energy when , with determined at least approximately by arguments he presented in 2008 in the Dark side of the universe conference. Well before certain effects make themselves apparent, in ways which are illustrated in the manuscript. Having at a point singularity would remove expansion by the scale factor, so that the extreme version of Stoica’s treatment in an isolated 4-dimensional universe would be no expansion at all.