Quantum Mechanics formalism remains difficult to understand and sometimes is confusing, especially in the explanation of ERP paradox and of Bell’s inequalities with entanglement photons. So a chart of conversion, in ...Quantum Mechanics formalism remains difficult to understand and sometimes is confusing, especially in the explanation of ERP paradox and of Bell’s inequalities with entanglement photons. So a chart of conversion, in which elements are named differently, is proposed. Next, experiment about Bell’s inequalities violation is described in another way, and we hope a clearer one. Main result is Bell’s inequalities would not be violated! The explanation would come from confusion between the definition of the correlation function S1, and a property S2. And consequently, Einstein, Podolski and Rosen would be right on the local “hidden” variable.展开更多
The teleportation of an arbitrary n-particle state is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a ...The teleportation of an arbitrary n-particle state is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a special Latin square of order , explicit expressions of outcomes after the Bell state measurements by Alice (sender) and the corresponding unitary transformations by Bob (receiver) can be derived. It is shown that the teleportation of n-particle state can be implemented by a series of single-qubit teleportation.展开更多
A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complet...A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the coherent-entangled state using an asymmetric beamsplitter is proposed. Some applications of the coherent-entangled state in quantum optics are also oresented.展开更多
Many future directions of scientific endeavors depend on quantum theory and the precise interpretation and significance of the entanglement of quantum-particles. This interpretation depends in turn on the physical mea...Many future directions of scientific endeavors depend on quantum theory and the precise interpretation and significance of the entanglement of quantum-particles. This interpretation depends in turn on the physical meaning of so called Bell-tests that are mostly performed using entangled photons and randomly switched polarizers to measure their polarization at distant locations. This paper presents a detailed critique of the well known theory of Bell tests given by Clauser-Horne-Shimony-Holt (CHSH). It is demonstrated that several important steps of the CHSH derivations contain serious inaccuracies of the underlying physics and probability theory and even a calculus error. As a consequence, the Bell-CHSH theory cannot be used to demonstrate extreme and opposite interpretations of entanglement such as super-luminal influences or alternatively super-determinism that cast aspersions on Einstein’s concepts of locality and separability.展开更多
We consider how to teleport two- and three-mode Einstein-Podolsky Rosen entangled states (|η) and |Pt, X2, X3)) via a |Pt, X2, X3) quantum channel for continuous variables. Using the complete and orthogonal r...We consider how to teleport two- and three-mode Einstein-Podolsky Rosen entangled states (|η) and |Pt, X2, X3)) via a |Pt, X2, X3) quantum channel for continuous variables. Using the complete and orthogonal representation of the entangled states, we can not only find the a complete basis set for the joint measurement but also propose the specific scheme of teleportation. Our calculation can be greatly simplified by using their Schmidt decompositions.展开更多
The presented paper is dedicated to a new ret-rospective view on the history of natural sci-ences in XX-XXI cc, partially including the sci-ence philosophy (mainly, the problems of the scientific realism, i.e. the cor...The presented paper is dedicated to a new ret-rospective view on the history of natural sci-ences in XX-XXI cc, partially including the sci-ence philosophy (mainly, the problems of the scientific realism, i.e. the correspondence of science to reality) and also a novel scheme for different classes of sciences with different ob-jects and paradigms. There are analyzed the chosen “great” and “grand” problems of phys-ics (including the comprehension of quantum mechanics, with a recently elaborated new chapter, connected with time as a quantum obs- ervable and time analysis of quantum processes) and also of natural sciences as a whole. The particular attention is paid to the interpretation questions and slightly to the aspects, inevitably connected with the world- views of the res- earchers (which do often constitute a part of the interpretation questions).展开更多
Ever since it first appeared in 1935, the famous paper by Einstein, Podolsky and Rosen, questioning the completeness of quantum mechanics as a theory, has courted controversy. The initial arguments with Bohr have neve...Ever since it first appeared in 1935, the famous paper by Einstein, Podolsky and Rosen, questioning the completeness of quantum mechanics as a theory, has courted controversy. The initial arguments with Bohr have never been forgotten or gone away;the ideas of Bell have remained;many experiments have been performed purporting to support the stance of Bohr. More recently, however, an experiment performed by a group in Basel has questioned this accepted position and, theoretically, this new perspective has received support from at least two sources. It is the work behind these two sources, especially the second, together with the experimental work at Basel, which form the basis for this examination of the present position as far as this extremely important position for physical science is concerned. Needless to say, considering the views expressed in these two approaches, it is also necessary and appropriate to consider some possible consequences if this new view becomes accepted. Due to the fact that the recent support for the Einstein, Podolsky, Rosen argument makes use of results in iso-mathematics, iso-mechanics and iso-chemistry, these possible consequences include the exact representation of nuclear data, the achievement of an attractive force between identical valence electrons with the ensuing exact representation of molecular data, the prediction of new clean energies and the prediction of the possible recycling of nuclear waste via stimulated decay—none of which is allowable utilising traditional quantum mechanics. Hence here, as well as discussing the resolution of the long standing issue provoked by the well-known Einstein, Podolsky, Rosen article, some of these consequences will be discussed with a view to provoking more general, open-minded discussion within the scientific community.展开更多
文摘Quantum Mechanics formalism remains difficult to understand and sometimes is confusing, especially in the explanation of ERP paradox and of Bell’s inequalities with entanglement photons. So a chart of conversion, in which elements are named differently, is proposed. Next, experiment about Bell’s inequalities violation is described in another way, and we hope a clearer one. Main result is Bell’s inequalities would not be violated! The explanation would come from confusion between the definition of the correlation function S1, and a property S2. And consequently, Einstein, Podolski and Rosen would be right on the local “hidden” variable.
文摘The teleportation of an arbitrary n-particle state is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a special Latin square of order , explicit expressions of outcomes after the Bell state measurements by Alice (sender) and the corresponding unitary transformations by Bob (receiver) can be derived. It is shown that the teleportation of n-particle state can be implemented by a series of single-qubit teleportation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11147009)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AQ027)the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J09LA07)
文摘A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the coherent-entangled state using an asymmetric beamsplitter is proposed. Some applications of the coherent-entangled state in quantum optics are also oresented.
文摘Many future directions of scientific endeavors depend on quantum theory and the precise interpretation and significance of the entanglement of quantum-particles. This interpretation depends in turn on the physical meaning of so called Bell-tests that are mostly performed using entangled photons and randomly switched polarizers to measure their polarization at distant locations. This paper presents a detailed critique of the well known theory of Bell tests given by Clauser-Horne-Shimony-Holt (CHSH). It is demonstrated that several important steps of the CHSH derivations contain serious inaccuracies of the underlying physics and probability theory and even a calculus error. As a consequence, the Bell-CHSH theory cannot be used to demonstrate extreme and opposite interpretations of entanglement such as super-luminal influences or alternatively super-determinism that cast aspersions on Einstein’s concepts of locality and separability.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475056).
文摘We consider how to teleport two- and three-mode Einstein-Podolsky Rosen entangled states (|η) and |Pt, X2, X3)) via a |Pt, X2, X3) quantum channel for continuous variables. Using the complete and orthogonal representation of the entangled states, we can not only find the a complete basis set for the joint measurement but also propose the specific scheme of teleportation. Our calculation can be greatly simplified by using their Schmidt decompositions.
文摘The presented paper is dedicated to a new ret-rospective view on the history of natural sci-ences in XX-XXI cc, partially including the sci-ence philosophy (mainly, the problems of the scientific realism, i.e. the correspondence of science to reality) and also a novel scheme for different classes of sciences with different ob-jects and paradigms. There are analyzed the chosen “great” and “grand” problems of phys-ics (including the comprehension of quantum mechanics, with a recently elaborated new chapter, connected with time as a quantum obs- ervable and time analysis of quantum processes) and also of natural sciences as a whole. The particular attention is paid to the interpretation questions and slightly to the aspects, inevitably connected with the world- views of the res- earchers (which do often constitute a part of the interpretation questions).
文摘Ever since it first appeared in 1935, the famous paper by Einstein, Podolsky and Rosen, questioning the completeness of quantum mechanics as a theory, has courted controversy. The initial arguments with Bohr have never been forgotten or gone away;the ideas of Bell have remained;many experiments have been performed purporting to support the stance of Bohr. More recently, however, an experiment performed by a group in Basel has questioned this accepted position and, theoretically, this new perspective has received support from at least two sources. It is the work behind these two sources, especially the second, together with the experimental work at Basel, which form the basis for this examination of the present position as far as this extremely important position for physical science is concerned. Needless to say, considering the views expressed in these two approaches, it is also necessary and appropriate to consider some possible consequences if this new view becomes accepted. Due to the fact that the recent support for the Einstein, Podolsky, Rosen argument makes use of results in iso-mathematics, iso-mechanics and iso-chemistry, these possible consequences include the exact representation of nuclear data, the achievement of an attractive force between identical valence electrons with the ensuing exact representation of molecular data, the prediction of new clean energies and the prediction of the possible recycling of nuclear waste via stimulated decay—none of which is allowable utilising traditional quantum mechanics. Hence here, as well as discussing the resolution of the long standing issue provoked by the well-known Einstein, Podolsky, Rosen article, some of these consequences will be discussed with a view to provoking more general, open-minded discussion within the scientific community.